한국해양대학교

Detailed Information

Metadata Downloads

컨테이너 크레인을 위한 RCGA 기반의 퍼지제어기

DC Field Value Language
dc.contributor.author 이윤형 -
dc.date.accessioned 2017-02-22T07:09:03Z -
dc.date.available 2017-02-22T07:09:03Z -
dc.date.issued 2007 -
dc.date.submitted 56877-06-13 -
dc.identifier.uri http://kmou.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002176007 ko_KR
dc.identifier.uri http://repository.kmou.ac.kr/handle/2014.oak/10344 -
dc.description.abstract This thesis presents the RCGA-based fuzzy controller for container cranes which effectively performs set-point tracking control of trolley and anti-swaying control under system parameter and disturbance changes. The first part of this thesis focuses on the derivation of the mathematical equation and Takagi-Sugeno(T-S) fuzzy model of a nonlinear container crane system. The T-S fuzzy model is described by several fuzzy IF-THEN rules which locally represent linear input-output relations of the system according to operation conditions and their parameters. The fuzzy membership functions are adjusted by a RCGA. The second part of this thesis presents a design methodology of the RCGA-based fuzzy controller which guarantees the robustness for changes to system parameters and disturbances, the fuzzy state observer which solves the problems of unmeasurable state variables. Sub-controllers are designed using another RCGA, which satisfy the given constraints for each subsystem and then the overall controller is performed with the combination of these sub-controllers by fuzzy IF-THEN rules. The fuzzy state observer is defined from the set of fuzzy rules with the state observer designed using a RCGA for each subsystem in order to solve the estimation error. The last part of this thesis performs a simulation to demonstrate the efficacy of the proposed methods. In the results of simulation, the fuzzy model with the membership functions adjusted by a RCGA showed almost similar dynamic characteristics compared to the outputs of the container crane for the input signal of step and sinusoidal types. The simulation results for the RCGA-based fuzzy controller showed not only the fast settling time compared to that of LQ controller for the significant change in parameters, reference input, initial conditions, and disturbances, but also stable and robust control performances without any steady-state error. Also, the fuzzy controller with fuzzy state observer demonstrated more robust control performance than that of LQ controller and showed almost similar response characteristics compared to the RCGA-based fuzzy controller. -
dc.description.tableofcontents Abstract ⅲ Nomenclature ⅴ 제 1 장 서론 1 1.1 연구 배경 및 동향 1 1.2 연구 내용 및 구성 3 제 2 장 RCGA, 퍼지이론 및 T-S 퍼지모델 6 2.1 RCGA 6 2.1.1 실수코딩 7 2.1.2 초기 집단의 생성 8 2.1.3 유전 연산자 8 2.1.4 적합도 평가 11 2.1.5 적합도의 스케일링 11 2.1.6 엘리트 전략 12 2.1.7 종료 조건 12 2.2 퍼지이론 14 2.2.1 퍼지집합 14 2.2.2 퍼지로직 시스템 21 2.2.3 추론법의 비교 34 2.3 T-S 퍼지모델 35 2.3.1 Takagi-Sugeno 추론법 35 2.3.2 T-S 퍼지모델 37 제 3 장 컨테이너 크레인의 모델링 41 3.1 컨테이너 크레인의 개요 41 3.2 컨테이너 크레인의 수학적 모델링 47 3.2.1 트롤리와 컨테이너 47 3.2.2 트롤리 구동부 54 3.2.3 상태공간 해석 56 3.3 RCGA를 이용한 파라미터 추정 58 제 4 장 컨테이너 크레인의 T-S 퍼지모델 61 4.1 서브시스템 61 4.2 퍼지규칙의 추론 62 4.3 RCGA를 이용한 소속함수의 최적 조정 63 제 5 장 컨테이너 크레인의 제어시스템 설계 67 5.1 선형 서브제어기 설계 67 5.2 퍼지제어기 설계 73 5.2.1 RCGA기반 퍼지제어기 설계 73 5.2.2 퍼지상태관측기 결합 퍼지제어기 설계 78 제 6 장 시뮬레이션 및 검토 84 6.1 컨테이너 크레인의 파라미터 추정 84 6.2 컨테이너 크레인의 T-S 퍼지모델 93 6.3 RCGA기반 퍼지제어기 101 6.4 퍼지상태관측기 결합 퍼지제어기 111 제 7 장 결론 121 참고문헌 123 감사의 글 131 -
dc.language kor -
dc.publisher 한국해양대학교 -
dc.title 컨테이너 크레인을 위한 RCGA 기반의 퍼지제어기 -
dc.title.alternative RCGA-Based Fuzzy Controller for Container Cranes -
dc.type Thesis -
dc.date.awarded 2007-08 -
dc.contributor.alternativeName Yun-Hyung -
dc.contributor.alternativeName Lee -
Appears in Collections:
메카트로닉스공학과 > Thesis
Files in This Item:
000002176007.pdf Download

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse