히스토그램을 이용한 무성자음과 잡음의 경계 추출
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 朴正任 | - |
dc.date.accessioned | 2017-02-22T07:27:42Z | - |
dc.date.available | 2017-02-22T07:27:42Z | - |
dc.date.issued | 2001 | - |
dc.date.submitted | 56797-10-27 | - |
dc.identifier.uri | http://kmou.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002174104 | ko_KR |
dc.identifier.uri | http://repository.kmou.ac.kr/handle/2014.oak/10846 | - |
dc.description.abstract | Voice activity detection(VAD), which separates the voice region from silence or noise region of input speech signal, is one of the indispensable pre-processing steps in continuous speech recognition, speech coding and noise estimation/reduction etc. While many successful researches were conducted continuous speech in noiseless environment or for isolated words in noisy environment, there are few method of VAD for continuous speech in heavy noise environment. Since unvoiced consonant signals have very similar characteristics to those of noise signals, it may result in serious distortion of unvoiced consonants to estimate and remove the noise components if voice activity detection and thereafter noise estimation/removal is carried out without paying special attention on unvoiced consonants. In this dissertation, assuming that the voiced sound regions are removed by a method developed in our lab, we propose a method to explicitly extract the boundaries between unvoiced consonant region and noise region so that more exact VAD could be performed. The proposed method is based on histogram in frequency domain which was successfully used by Hirsch for noise estimation, and also on similarity measure of frequency components between adjacent frames. To evaluate the performance of the proposed method, experiments on unvoiced consonant boundary detection was carried out on noisy speech signals of 10dB and 15dB SNR. For all seven kinds of noised, the overall rate of correct extraction resulted in approximately 90%. The proposed algorithm could be used for VAD for speech recognition and speech coding as well as for noise estimation and reduction in heavy noise environments. | - |
dc.description.tableofcontents | Abstract = ⅲ 제 1 장 서론 = 1 제 2 장 우리말의 음소 = 4 2.1 우리말의 음소(phonemes) = 4 2.1.1 모음(vowels) = 4 2.1.2 자음(consonants) = 5 2.1.3 반모음(semivowel) = 6 2.2 유성음과 무성음(voiced and unvoiced sounds) = 7 2.2.1 유성음과 무성음의 비교 = 7 2.2.2 비유성음 구간에서의 신호의 구성 형태 = 10 제 3 장 무성자음(unvoiced consonant)과 잡음(noise) = 12 3.1 무성자음 = 12 3.1.1 무성자음의 지속 길이 분포 = 12 3.1.2 무성자음의 파워 스펙트럼 분포 = 13 3.2 잡음의 종류와 특징 = 18 3.2.1 가산 잡음 = 18 3.2.2 채널 왜곡 = 19 3.3 본 연구에서 대상으로 하는 잡음 데이터 = 20 제 4 장 음성구간의 경계결정 = 26 4.1 전처리 = 28 4.1.1 음성신호 레벨 조정 = 28 4.1.2 프레임 나누기 = 29 4.1.3 파워 스펙트럼(Power Spectrum) = 29 4.1.4 저역통과 필터 = 30 4.2 유성음과 비유성음의 경계 추출 = 30 4.2.1 유성음 구간 추출 = 30 4.2.2 유성음 구간 재 설정 = 32 4.3 잡음모델 생성 = 34 4.3.1 파워 스펙트럼 평탄화(Smoothing) = 35 4.3.2 프레임 특성 구분을 위한 잡음신호 모델 생성 = 35 4.4 비유성음 구간에서 무성자음 구간과 잡음 구간 경계 추출 방법 = 38 4.4.1 잡음모델을 이용한 경계 추출 파라미터 생성 = 39 4.4.2 무성자음신호 구간과 잡음신호 구간 경계 결정 = 42 제 5 장 실험 및 성능 평가 = 46 5.1 음성데이터 = 47 5.2 무성자음과 잡음의 경계추출 실험 = 47 5.2.1 잡음이 첨가된 음성신호 = 47 5.2.2 비유성음 구간 추출 = 49 5.2.3 무성자음과 잡음의 경계 추출 = 49 제 6 장 결론 = 56 참고 문헌 = 58 | - |
dc.publisher | 한국해양대학교 대학원 | - |
dc.title | 히스토그램을 이용한 무성자음과 잡음의 경계 추출 | - |
dc.title.alternative | Detection of Boundaries between Unvoiced Consonants and Noise using Histogram | - |
dc.type | Thesis | - |
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.