Stellite 21로 하드페이싱된 열간 단조 금형의 열응력제어층 설계 연구
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 윤주환 | - |
dc.date.accessioned | 2019-12-16T02:41:19Z | - |
dc.date.available | 2019-12-16T02:41:19Z | - |
dc.date.issued | 2017 | - |
dc.identifier.uri | http://repository.kmou.ac.kr/handle/2014.oak/11324 | - |
dc.identifier.uri | http://kmou.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002328688 | - |
dc.description.abstract | Hardfacing process using metal 3D printing is being studied to improve the life of the die during the hot forging process. At this time, thermal fatigue can occur because of thermal expansion coefficient differences between two materials; substrate and hardfaced layer and the concept of a thermal stress control layer(TSCL) is introduced to solve this problem. In this study, we would like to select position and thickness of hardfaced layer and predict the proper shape, mixing ratio of Stellite 21 and thickness of TSCL for harfaced hot forging die via axi-symmetric finite element analysis. As a result of wear test of hardfaced die based on the results of wear analysis, it was confirmed that the die life was increased. The initial shape of TSCL for finite element analysis was selected by deposited certain region. The thickness of TSCL ranges from 1~2 mm. The results of each design were analyzed by deviation of maximum principal stress used to observe the possible separation at the interface. The proper design was selected as 50% of Stellite 21 mixing ratio and 1 mm thickness, but the thermal stress at the boundary of interface occurred large value. In order to this problem, the finite element analysis was performed by changing the shape of TSCL to deposit as a whole region on the substrate. Based on the results of deviation of maximum principal stress at the interface, a proper design was derived. As a result, it was found that the thickness was 1 mm and the Stellite 21 mixing ratio was 50%. | - |
dc.description.tableofcontents | Abstract ⅳ Nomenclature ⅵ List of Tables ⅶ List of Figures ⅷ 1. 서론 1 1.1 연구 배경 1 1.2 연구 목적 2 1.3 연구 내용 2 2. 유한요소 해석의 이론적 배경 3 3. 유한요소 해석을 통한 하드페이싱 구간 선정 8 3.1 공정 해석 8 3.2 마모 모델식 11 3.3 마모 해석 결과 및 실험 12 3.3.1 마모 해석 결과 12 3.3.2 마모 측정 결과 17 4. 유한요소 해석을 통한 열응력제어층 설계 19 4.1 열응력제어층 설계 안 21 4.2 경계 조건 및 재료 물성치 22 4.2.1 금형의 경계조건 22 4.2.2 재료 물성치 24 4.2.3 열전달 구간 스텝 증분 설정 27 4.3 최대주응력 분포 특성 28 4.3.1 공정 별 최대 주응력 단차 30 (1) Interface A 30 (2) Interface B 32 4.3.2 공정 별 최대 주응력 단차의 변화 37 5. 열응력제어층 형상 변경에 따른 공정 해석 39 5.1 열응력제어층 형상 및 공정 변수 39 5.2 최대 주응력 분포 특성 40 5.2.1 공정 별 최대 주응력 단차 43 (1) Interface A-2 43 (2) Interface B 46 5.2.2 공정 별 최대 주응력 단차의 변화 49 6. 결론 51 참고문헌 53 | - |
dc.format.extent | 55 | - |
dc.language | kor | - |
dc.publisher | 한국해양대학교 일반대학원 | - |
dc.title | Stellite 21로 하드페이싱된 열간 단조 금형의 열응력제어층 설계 연구 | - |
dc.type | Dissertation | - |
dc.date.awarded | 2017-02 | - |
dc.contributor.alternativeName | Yoon, JooHwan | - |
dc.contributor.department | 대학원 기계공학과 | - |
dc.contributor.affiliation | 한국해양대학교 일반대학원 | - |
dc.description.degree | Master | - |
dc.subject.keyword | 열간 금형강, 하드페이싱, 열응력제어층, 열응력 | - |
dc.type.local | Text | - |
dc.title.translated | A Study of Design of Thermal Stress Control Layer for Stellite 21 Hardfaced Hot Forging Die | - |
dc.identifier.holdings | 000000001979▲000000006780▲000002328688▲ | - |
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.