소수력용 프란시스 수차의 고성능화를 위한 직접설계법의 개발 및 적용에 관한 연구
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 황영철 | - |
dc.date.accessioned | 2019-12-16T02:41:29Z | - |
dc.date.available | 2019-12-16T02:41:29Z | - |
dc.date.issued | 2017 | - |
dc.identifier.uri | http://repository.kmou.ac.kr/handle/2014.oak/11336 | - |
dc.identifier.uri | http://kmou.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002329109 | - |
dc.description.abstract | In order to strengthen the national competitiveness of natural disasters such as earthquakes and typhoons, which are frequently occurring at home and abroad, energy independence and the acquisition of clean energy using new and renewable energy Interest is growing. Especially in Korea, due to the saturation of the hydro energy market, entry of foreign competitors into the market, lack of fundamental technology related to hydro power and lack of professional technical personnel, technology is becoming more and more important. In this study, we propose a new design process that combines the fundamental design technology and the latest design technology for the francis turbine, which is widely used in the hydropower market, and confirm its feasibility. The design theories that were applied to the francis turbine was reestablished for small hydropower generation, and design by applying 1 pitch analysis method of the stay vanes, guide vane, runner was confirmed possible by using ANSYS BladeGen and CFD. Especially, in the flow analysis performed based on the design data, the efficiency of the francis turbine measured by considering the loss of leakage was 90.62%. Based on the results of the flow analysis, was measured at 88.9% under the 73kW turbine output design condition. Therefore, it was confirmed that the design of the francis turbine was performed very well as a result of the analysis of the turbine through the analysis and the experiment. In order to apply the direct design method, the height of inlet, design flow-rate, and theoretical drift for the blade inlet and outlet velocity triangles based on the theoretical head calculation, we can easily determine the shape of the runner blade and determine the adoption of the selected shape through the flow analysis to the extent that the outflow angle of the runner satisfies 90 degrees. This method can confirm the result in a very short time compared with the existing design method, and confirms the same result as full domain analysis in an error range of less than 2%. The results show that the leakage loss of inside of the francis turbine is mainly occupied by the leakage loss in runner inside and can be expected to improve the efficiency of the turbine by reducing the leakage loss. In particular, according to the results of the loss distribution analysis, it was confirmed that the efficiency of the turbine can be improved most remarkably when the performance of the runner, the guide vane and the draft tube is improved. In this study, it is confirmed that the efficiency loss due to leakage loss reaches 1.66%, and the efficiency is more than 90% because the loss is decreased when the output and flow rate increase. Therefore, it is possible to supply high performance turbine when the improvement method of the turbine is applied through the loss analysis in the design stage. And when the direct design method is applied, the high efficiency francis turbine can be supplied in market with a short time delivery. In addition, it is expected that the high efficiency francis turbine can be applied to the low specific speed range of less than 70 (lower than Ns70) and the high specific speed range of which the speed is higher than 300. The efficiency of francis turbine will be increase and it will be able to secure various economic benefits by expanding the scope of application. | - |
dc.description.tableofcontents | 목 차 Nomenclature i List of Tables iii List of Figures iv Abstract ix 제 1 장 서 론 1.1 연구 배경 및 필요성 1 1.2 최근 연구 동향 7 1.3 연구의 목적과 범위 10 제 2 장 프란시스 수차의 설계 개요 및 필요성 2.1 프란시스 수차 특성 13 2.2 프란시스 수차의 구조 14 2.3 프란시스 수차 설계 이론 22 2.4 프란시스 수차의 설계와 성능 검증 30 2.4.1 수력 설계 30 2.4.2 수차 설계 31 2.4.3 프란시스 수차의 성능시험 33 2.4.4 수치해석법 35 2.5 직접설계법 49 제 3 장 프란시스 수차 기본설계 3.1 프란시스 수차의 러너 설계 53 3.1.1 러너 입구 설계 54 3.1.2 러너 출구 설계 56 3.1.3 러너 주요 치수의 결정 58 3.1.4 설계 유량의 결정 및 속도삼각형 작도 58 3.1.5 러너의 외형치수 결정 60 3.2 프란시스 수차의 가이드베인 설계 66 3.3 프란시스 수차의 주요 구성품 설계 75 3.3.1 스테이베인 설계 75 3.3.2 케이싱 설계 76 3.3.3 케이싱 입구에서 스테이베인 입구 흐름 설계 78 3.3.4 흡출관 설계 79 3.3.5 수차축의 설계 81 3.4 기본설계방안 제시 결과 86 제 4 장 프란시스 수차 상세설계 4.1 설계항목 결정 88 4.2 러너 형상 결정 90 4.2.1 Inlet angle 결정 91 4.2.2 Port area를 이용한 Outlet angle 결정 91 4.2.3 계산을 통한 Outlet angle 결정 94 4.2.4 러너 형상 결정 95 4.3 가이드베인 설계 107 4.4 케이싱과 스테이베인의 설계 109 4.5 최적 배치안 결정 및 흡출관 형상 결정 112 4.6 수치해석용 3차원 형상 결정 115 4.7 상세설계방안 제시 결과 118 제 5 장 프란시스 수차 성능해석 5.1 내부 유동해석에 따른 수차모델 성능해석 120 5.1.1 성능특성 121 5.1.2 내부 손실 검토 122 5.1.3 블레이드에서의 유선분포 122 5.1.4 가이드베인 개도에 따른 성능 검토 123 5.2 캐비테이션 성능 131 5.3 구조안정성 검토 133 5.3.1 연성해석 모델 및 격자계 133 5.3.2 해석조건 134 5.3.3 해석결과 135 5.4 실험용 수차 제작 및 설치 143 5.5 프란시스 수차 성능시험 148 5.5.1 성능시험설비 재현성 시험 148 5.5.2 성능시험 결과 149 5.6 성능시험 수행 결과 154 제 6 장 직접설계법을 적용한 소수력발전용 프란시스 수차의 고성능화 6.1 수차 설계의 간소화 158 6.2 손실 요소 관리 162 제 7 장 결 론 165 감사의 글 167 참고문헌 168 | - |
dc.format.extent | 189 | - |
dc.language | kor | - |
dc.publisher | 한국해양대학교 대학원 | - |
dc.title | 소수력용 프란시스 수차의 고성능화를 위한 직접설계법의 개발 및 적용에 관한 연구 | - |
dc.type | Dissertation | - |
dc.date.awarded | 2017-02 | - |
dc.contributor.department | 대학원 기계공학과 | - |
dc.description.degree | Doctor | - |
dc.subject.keyword | francis turbine, direct design | - |
dc.type.local | Text | - |
dc.identifier.holdings | 000000001979▲000000006780▲000002329109▲ | - |
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.