한국해양대학교

Detailed Information

Metadata Downloads

A study on the performance of a cross-flow air turbine utilizing an orifice for OWC wave energy converters

DC Field Value Language
dc.contributor.advisor 이영호 -
dc.contributor.author 강홍구 -
dc.date.accessioned 2019-12-16T02:42:37Z -
dc.date.available 2019-12-16T02:42:37Z -
dc.date.issued 2017 -
dc.identifier.uri http://repository.kmou.ac.kr/handle/2014.oak/11395 -
dc.identifier.uri http://kmou.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002331337 -
dc.description.abstract Ocean energy which includes tidal energy, ocean thermal energy conversion, wave energy and other marine energy currents, hold an enormous amount of untapped energy that, if exploited extensively, have a potential for contributing significantly to the electricity supply of countries facing the sea. One of the most successful and most extensively investigated devices for extracting wave energy is the Oscillating Water Column (OWC). OWCs have been widely developed due to its potential deployment if various water conditions and its simplicity in design. The common OWC wave energy converter consists of fixed or floating structure, which opens to the sea below the water surface and absorbs wave energy, and a turbine coupled to a generator. Wave motion inside the chamber induces an exhalation and inhalation of the trapped air which drive the bi-directional turbine at the opening of the device. The turbine is connected to a generator so that mechanical motion from the rotating blade is converted to an electrical energy. A cross-flow air turbine is a candidate for use of a self-starting turbine due to its characteristic, high coefficient at a low tip speed ratio. In addition, it has excellent stabilityand low noise. With its characteristics this turbine may be more suitable at places where require low noise compared to typical commercialized air turbines such as Wells and impulse turbine. In this research, the investigation of cross-flow air turbine for OWC wave energy converter have been undertaken. First, a numerical analysis of the turbine by CFD have been conducted in order to acquire its performance characteristics in various range of the flow rate with different rotational speed of the rotor. Model scale analysis was proposed to design and compare with experimental model, and 1/16 model scale was determined. In addition, the orifice plate as substitute was adopted not only to simulate the behavior of the turbine by numerical analysis and experiment but also to verify the CFD result with the experiment result. The size of the orifice plate was determined by matching the pressure drop between upstream and downstream of turbine and orifice. Thus, the comparative study between orifice plates and turbine simulation have been proposed. -
dc.description.tableofcontents List of Tables .......................................................................................................... iii List Figures ............................................................................................................. iv Abstract .................................................................................................................. vii Nomenclature ......................................................................................................... ix Chapter 1. Introduction .............................................................................. 1 1.1 Background .......................................................................................... 1 1.2 Wave Energy Converter ....................................................................... 2 1.3 Literature Survey .................................................................................. 4 1.3.1 OWC ............................................................................................... 4 1.3.2 Air turbine for OWC WEC ............................................................. 5 1.3.3 Linear wave theory .......................................................................... 7 1.4 Objective of research .......................................................................... 12 Chapter 2. CFD analysis of a cross-flow air turbine 14 2.1 ANSYS CFD Code ............................................................................. 14 2.1.1 Discretization of the governing equations .................................... 14 2.1.2 Turbulence model ......................................................................... 16 2.2 Design of cross-flow turbine .............................................................. 19 2.3 Steady State simulation ...................................................................... 20 2.3.1 Numerical analysis setup .............................................................. 21 2.3.2 CFD result and discussion............................................................. 23 2.4 Transient simulation ........................................................................... 28 2.4.1 Numerical setup ............................................................................ 29 2.4.2 Data analysis ................................................................................. 30 2.4.3 CFD result and discussion............................................................. 35 Chapter 3. Validation of an Orifice for turbine damping effects ......... 47 3.1 Ideal Air .............................................................................................. 47 3.2 Orifice PTO system ............................................................................ 48 3.3 Design of Orifice ................................................................................ 49 3.4 Numerical analysis of Orifice ............................................................. 50 3.4.1 Numerical analysis setup .............................................................. 50 3.4.2 CFD result and discussion............................................................. 52 3.5 Experimental analysis of Orifice ........................................................ 55 3.6 Result of experiment and comparative study ..................................... 58 Chapter 4. Conclusion............................................................................... 62 Acknowledgements................................................................................................. 64 Reference ................................................................................................................. 65 -
dc.format.extent 68 -
dc.language eng -
dc.publisher 한국해양대학교 대학원 -
dc.title A study on the performance of a cross-flow air turbine utilizing an orifice for OWC wave energy converters -
dc.type Dissertation -
dc.date.awarded 2017-02 -
dc.contributor.department 대학원 기계공학과 -
dc.description.degree Master -
dc.subject.keyword OWC, Wave energy, cross-flow air turbine, orifice, PTO system -
dc.type.local Text -
dc.identifier.holdings 000000001979▲000000006780▲000002331337▲ -
Appears in Collections:
기계공학과 > Thesis
Files in This Item:
A study on the performance of a cross-flow air turbine utilizing an orifice for OWC wave energy converters.pdf Download

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse