KOMPSAT-3 영상 기반 머신러닝 기법을 활용한 해안선 추출 및 변화 모니터링 시스템 개발에 관한 연구
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | 신성렬 | - |
dc.contributor.author | 구본엽 | - |
dc.date.accessioned | 2019-12-16T02:48:36Z | - |
dc.date.available | 2019-12-16T02:48:36Z | - |
dc.date.issued | 2018 | - |
dc.identifier.uri | http://repository.kmou.ac.kr/handle/2014.oak/11574 | - |
dc.identifier.uri | http://kmou.dcollection.net/common/orgView/200000010942 | - |
dc.description.abstract | This paper describes the development of a shoreline extraction and change monitoring system aimed at providing coastal-environment information using high-resolution KOMPSAT series satellite images. For the satellite-image-based shoreline automatic extraction, the machine-learning-based object extraction algorithm was developed, and to utilize the developed algorithm for services, the OpenCV-based monitoring system was developed. In addition, to verify the accuracy of the extracted shoreline information, the reliability of the developed algorithm was verified by comparing the proposed system with the existing diverse image object extraction methods and manually digitized results. First, to develop the high-resolution-image-based shoreline automatic extraction algorithm, the artificial-neural-network-(ANN)-based machine learning technique was used. For the application of this technique, training sample data extracted in advance from KOMPSAT images were created, and the clustering technology was applied to the data. The water and land were divided into binary categories to extract vector-format shorelines. Thus, data with more precise accuracy compared to the existing NDVI-based shoreline data extraction technique can be extracted, and the final vector-format data were calculated, making it possible to maximize their use as quantitative data. That is, the final output was calculated in terms of the type of standardized data in the geographical information category, thus securing the diverse uses of the analysis results. In addition, to develop a monitoring system for its effective utilization, instead of using the existing commercial software, an OpenCV-based system was implemented for extracting, comparing, and analyzing shoreline data. As a result, the system can be used in diverse platform environments, and in particular, the multiple-time image-based data comparison and analysis function makes it possible to conduct quantitative analysis and to monitor shoreline change trends. Thus, the system is believed to be usable as an effective tool for analyzing coastal- environment changes. Coastal-environment changes occur more slowly and are wider in scope compared to land environment and weather changes, making it difficult to define their occurrence time as well as to quantify the coastal damage, if any. The main purpose of analyzing the satellite-image-based global observation information is to monitor the change trends from the macro perspective. Given this purpose, the proposed shoreline data extraction algorithm and the monitoring system using such algorithm are deemed to be suitable as tools for analyzing the coastal-environment change data. | - |
dc.description.tableofcontents | 1. 서 론 1 1.1 연구배경 및 목적 1 1.2 연구내용 및 방법 3 2. 해안선 변화 모니터링을 위한 위성정보 활용 및 객체추출 방법 5 2.1 해안선 변화 모니터링 관측을 위한 국내외 위성정보 활용 현황 5 2.2 고해상도 영상 기반 해안선 매핑 기법 개발에 관한 국내외 연구 동향 7 3. 다중시기 아리랑 위성영상을 활용한 해안선 변화 모니터링 시스템 구축 15 3.1 위성영상 기반 해안선 추출 알고리즘 구축을 위한 적용 이론 검토 15 3.1.1 정규수분지수(NDVI: Normalized Difference Water Index) 16 3.1.2 정규식생지수(NDVI: Normalized Difference Vegetation Index) 18 3.1.3 에지 검출 기법(Edge Detection Technique) 20 3.1.4 이진화 기법(Thresholding Technique) 23 3.1.5 머신러닝(기계학습) 기법(Machine Learning Technique) 27 3.1.6 모폴로지 필터링(Morphological Fitlering) 31 3.2 위성영상을 활용한 해안선 추출 및 변화 모니터링 시스템 구축 34 3.2.1 위성영상을 활용한 해안선 추출 알고리즘 설계 34 3.2.2 해안선 자동 추출 알고리즘 개발 37 3.2.3 해안선 매핑 프로토타입 개발 41 3.2.4 해안선 매핑 및 변화 모니터링 시스템 개발 46 4. 해안선 추출 및 변화 모니터링 시스템을 활용한 해안선 변화 분석 및 정확도 검증 56 4.1 정확도 검증을 위한 적용 지역 선정 56 4.2 추출결과의 정확도 검증 57 5. 결론 60 감사의 글 62 References 64 | - |
dc.language | kor | - |
dc.publisher | 한국해양대학교 | - |
dc.rights | 한국해양대학교 논문은 저작권에 의해 보호받습니다. | - |
dc.title | KOMPSAT-3 영상 기반 머신러닝 기법을 활용한 해안선 추출 및 변화 모니터링 시스템 개발에 관한 연구 | - |
dc.type | Dissertation | - |
dc.date.awarded | 2018-02 | - |
dc.contributor.department | 해사산업대학원 해양에너지자원공학과 | - |
dc.description.degree | Master | - |
dc.identifier.holdings | 000000001979▲200000000139▲200000010942▲ | - |
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.