전이금속 나노입자-활성탄 복합체를 이용한 미생물 전해전지의 메탄 생산효율 향상
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | 채규정 | - |
dc.contributor.author | 김경록 | - |
dc.date.accessioned | 2019-12-16T02:52:02Z | - |
dc.date.available | 2019-12-16T02:52:02Z | - |
dc.date.issued | 2018 | - |
dc.identifier.uri | http://repository.kmou.ac.kr/handle/2014.oak/11641 | - |
dc.identifier.uri | http://kmou.dcollection.net/common/orgView/200000013798 | - |
dc.description.abstract | Electromethanogenesis is a form of electrobiofuel production through a microbial electrolysis cell (MEC) where methane (CH4) is directly produced from an electrical current and carbondioxide (CO2) using a cathode. With the aim of maximizing methanogenesis in an MEC, this study utilized granular activated carbon (GAC) and a transition metal catalyst to fabricate nickel (Ni) nanoparticle (NP) loaded GAC (Ni-NP/GAC) composites and incorporated these into MECs. In this set-up, GAC acted as the main electrical conduit for direct interspecies electron transfer (DIET) between exoelectrogens and methanogenic electrotrophs, and the Ni NPs served as a catalyst to further improve microbe-to-GAC electron transfer. The Ni-NP/GAC-composites were prepared using two different methods (microwave irradiation and solution plasma ionization). The Ni NPs were determined to be well doped on the GAC surface according to a field emission scanning electron microscope (FE-SEM) and energy-dispersive X-ray (EDX) spectroscopy analysis. Adding GAC into MECs improved CH4 production. The Ni-NP/GAC composites prepared by solution plasma ionization showed the highest CH4 production (20.7mL), followed by the Ni-NP/GAC composite prepared by microwave irradiation (19.6mL), bare GAC (15.6mL), and GAC-free control (9.6mL). In the methanogenic MECs, 40.6% of CH4 was produced from an electrode reaction (i.e., reduction of CO2 to CH4), and the remaining 59.4% was generated by nonelectrode reactions. KEY WORDS: Microbial electrolysis cell 미생물전해전지; Solution plasma 솔루션 플라즈마; Direct interspecies electron transfer 종간전자직접전달; Electromethanogenesis 전기적메탄생산; Metal nanoparticle-activated carbon composite 금속 나노입자-활성탄 복합체 | - |
dc.description.tableofcontents | 제 1 장 서론 1 제 2 장 문헌연구 4 2.1 미생물전해전지 4 2.1.1 혐기성 소화의 기본원리 4 2.1.2 미생물전해전지의 기본원리 7 2.2 Direct interspecies electron transfer 9 2.2.1 Direct interspecies electron transfer의 기본원리 9 2.2.2 Direct interspecies electron transfer에 관여하는 미생물 11 2.2.3 Direct interspecies electron transfer의 최근 연구동향 14 2.3 Ni/Np-GAC 복합체 16 2.3.1 Microwave irradiation 16 2.3.2 Solution plasma 17 제 3 장 실험 재료 및 방법 20 3.1 실험 장치 20 3.1.1 미생물전해전지 구성 20 3.1.2 Ni/Np-GAC 복합체 제작 22 3.2 운전조건 24 3.3 분석과 계산 26 3.3.1 미생물전해전지의 메탄가스 생산량 26 3.3.2 복합체 증착효율 평가 27 제 4 장 실험 결과 및 고찰 28 4.1 Ni/Np-GAC 복합체의 특성평가 28 4.1.1 Ni/Np-GAC 복합체의 표면특성 및 니켈 부착량 계산 28 4.2 미생물전해전지의 성능평가 31 4.2.1 미생물전해전지의 메탄가스 생산량 평가 31 4.2.2 미생물전해전지에서 발생하는 메탄의 기원 34 제 5 장 결론 38 감사의글 40 참고문헌 41 | - |
dc.format.extent | 52 | - |
dc.language | kor | - |
dc.publisher | 한국해양대학교 대학원 | - |
dc.rights | 한국해양대학교 논문은 저작권에 의해 보호받습니다. | - |
dc.title | 전이금속 나노입자-활성탄 복합체를 이용한 미생물 전해전지의 메탄 생산효율 향상 | - |
dc.type | Dissertation | - |
dc.date.awarded | 2018-02 | - |
dc.contributor.alternativeName | Kyeongrok Kim | - |
dc.contributor.department | 대학원 토목환경공학과 | - |
dc.contributor.affiliation | 한국해양대학교 대학원 토목환경공학부 | - |
dc.description.degree | Master | - |
dc.subject.keyword | 미생물전해전지, 종간직접전자전달, 금속 나노-활성탄 복합체, 솔루션플라즈마 | - |
dc.title.translated | Improvement of methane production efficiency of microbial electrolysis cells using transition metal nanoparticles and granular activated carbon composites | - |
dc.contributor.specialty | 환경공학 | - |
dc.identifier.holdings | 000000001979▲200000000139▲200000013798▲ | - |
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.