한국해양대학교

Detailed Information

Metadata Downloads

Electrode modification for improving the performance of bioelectrochemical cell

DC Field Value Language
dc.contributor.advisor 채규정 -
dc.contributor.author 최윤정 -
dc.date.accessioned 2020-07-22T04:17:45Z -
dc.date.available 2020-07-22T04:17:45Z -
dc.date.issued 2020 -
dc.identifier.uri http://repository.kmou.ac.kr/handle/2014.oak/12334 -
dc.identifier.uri http://kmou.dcollection.net/common/orgView/200000283934 -
dc.description.abstract Bioelectrochemical cell (BES) is a technology that obtains energy from organic compounds by electrically active microorganisms. Depending on the form of energy, it can be divided into microbial fuel cell (MFC) that produce currents and microbial electrolysis cell (MEC) that produce high value-added materials such as methane and hydrogen. Most biochemical cells consist of anodes, cathodes, cation exchange membranes, and external power supply. Among them, electrodes are an important factor in determining MEC efficiency and focus on electrode modification to improve BES performance. In the case of cathodes, the cost-effective electrode was fabricated to replace the high-cost Pt and applied to the MFC. Non-platinum-based metal (PGM-free) nanocatalysts were prepared using a simple and cost-effective technique called electrophoresis (EPD) and showed high catalytic oxygen reduction reaction rate (ORR) on the surface of MFC cathode. Among the catalysts without PGM, the maximum power density of 1630.7 mW m-2 was obtained based on nickel nanoparticles. This value is 400% higher than the value obtained using commercial Pt catalysts under the same conditions. These results are due to the uniform deposition of Ni/NiOx nanoparticles on the cathode, which improves electrical conductivity, catalyst activity, and long-term stability and reduces electron transfer resistance. PGM-free catalysts significantly enhanced MFC performance induced by metal/metal oxide nanoparticle layer formation and accelerated ORR. For anodes, it was improved as a conductive polymer material to solve the inefficient problem of carbon felt (CF) commonly used and applied to MEC. CF has a high surface area with three-dimensional porosity, but since it is hydrophobic, it is not easy to move water and gas, so only electrode surfaces are used (role as a 2D electrode). To solve this problem, poly 3,4-ethylenedioxythiophene:polystyrenesulfonate (PEDOT:PSS) was used as a unique material including high conductivity (PEDOT) and hydrophilic group (PSS). PEDOT:PSS was coated on the CF surface by electropolymerization and improved durability by heat treatment at 110℃. PEDOT:PSS/CF electrode improved biocompatibility and electron transfer to the oxidation electrode by greatly improving hydrophilicity (water contact angle changed from 136.5° to 0°). As a result, the MEC using PEDOT:PSS/CF as a cathode material produced 33.4% higher hydrogen than the MEC using CF. Overall, the performance of BES can be improved by cost-effectively modifying materials suitable for the characteristics of electrodes, which indicates significant progress in commercialization.|생물전기화학전지(BES)는 전기화학적으로 활성을 가지는 미생물에 의해 유기화합물로부터 에너지를 얻는 기술이다. 에너지 형태에 따라 전류를 생성하는 MFC와 메탄 및 수소와 같은 고부가가치 물질을 생성하는 MEC로 나눌 수 있다. 대부분 생물전기화학전지는 산화전극, 환원전극, 양이온교환막 및 외부 전원으로 이루어져 있다. 그중에서도, 전극은 전지 효율을 결정하는 중요한 요소로, 전지 성능 향상을 위한 전극 개질에 집중한다. 환원전극의 경우, 고비용의 Pt를 대체할 수 있는 비용효과적인 전극을 제작하여 MFC에 적용하였다. 비백금계 금속(PGM-free) 나노촉매는 전기영동증착(EPD)이라는 간단하고 비용 효율적인 기술을 사용하여 제조했으며, MFC의 환원전극 표면에서 높은 촉매 산소환원반응속도(ORR)를 나타냈다. 시험된PGM-free 촉매(Ni, Co, 및 Cd 기반) 중에서 니켈 나노 입자를 기준으로 1630.7 mW m−2의 최대 전력 밀도가 달성되었다. 이 값은 동일한 조건에서 상용화된 Pt 촉매를 사용하여 얻은 값보다 400% 더 높다. 이 결과는 환원전극 상에 Ni/NiOx 나노 입자의 얇은 층의 균일한 증착에 기인하며, 이는 전자전달저항을 감소시키면서 전기전도도, 촉매 활성 및 장기 안정성을 개선했다. 제조된 PGM-free 촉매는 금속/금속 산화물 나노입자 층 형태에 의해 유도된 MFC 성능 및 가속화된 ORR을 상당히 개선했다. 산화전극의 경우, MEC에 일반적으로 사용되고 적용되는 탄소펠트(CF)의 비효율적인 문제를 해결하기 위해 전도성 고분자 재료로 개선했다. CF는 3차원 다공성을 갖는 높은 표면적을 가지고 있지만 소수성이므로 물과 가스를 이동하기가 쉽지 않으므로 전극 표면만 사용된다. 이러한 문제를 해결하기 위해, poly 3,4-ethylenedioxythiophene:polystyrenesulfonate (PEDOT:PSS)를 고전도도 (PEDOT)와 친수성기 (PSS)를 포함하는 독특한 물질을 사용하였다. PEDOT:PSS는 전기중합에 의해 CF 표면에 코팅되었고 110℃에서 열처리에 의해 내구성이 향상되었다. PEDOT:PSS/CF 전극은 친수성을 크게 향상함으로써 산화전극으로의 생체적합성과 전자 전달을 개선하였다. (물 접촉각이 136.5°에서 0°로 변화됨.) 그 결과, PEDOT:PSS/CF를 산화전극으로 사용한 MEC는 CF를 사용한 MEC보다 33.4% 높은 수소를 생산하였다. 전반적으로, 전극의 특성에 맞는 재료를 사용하여 전극의 비용 효율적인 개질을 통해 BES의 성능을 향상시킬 수 있으며, 이는 BES의 상용화에 중요한 진보를 나타낸다. -
dc.description.tableofcontents Chapter 1. Literature review 1 1.1 Bioelectrochemical cell 1 1.1.1 Priciple of MFC and MFC in electrochemical aspects 2 1.2 Key configuration factors 4 1.2.1 Anode 4 1.2.2 Cathode 6 1.2.3 Proton exchange membrane 7 1.3 References 9 Chapter 2. Electrophoretically fabricated nickel/nickel oxides as cost effective nanocatalysts for the oxygen reduction reaction in air-cathode microbial fuel cell 15 2.1 Introduction 15 2.2 Materials and methods 18 2.2.1 Electrode fabrication 18 2.2.2 MFC assembly and operation 19 2.2.3 Material characterizations 20 2.2.4 Electrochemical measurements and polarization curves 20 2.3 Results and discussion 22 2.3.1 Morphology of the fabricated cathodes 22 2.3.2 Chemical structure of the fabricated cathodes 23 2.3.3 Oxygen reduction reaction characteristics 28 2.3.4 Open circuit voltage and power density 31 2.3.5 Internal resistance of MFCs 35 2.3.6 COD removal and coulombic efficiency 35 2.4 Conclusions 37 2.5 References 38 Chapter 3. Highly hydrophilic, conductive, biocompatible 3D porous electrode fabrication using multifunctional PEDOT:PSS polymer for electrohydrogenesis in microbial electrolysis cell 44 3.1 Introduction 44 3.2 Materials and methods 47 3.2.1 Preparation of PEDOT:PSS doped carbon felt 47 3.2.2 Morphology and biocompatibility property 47 3.2.3 Chemical structure and wettability 48 3.2.4 Electrochemical analysis 49 3.2.5 Two-chambered MEC set-up and operation 49 3.2.6 Coulombic efficiency 50 3.3 Results and discussion 51 3.3.1 Morphology and elements of the fabricated anodes 51 3.3.2 Chemical structure of the fabricated anodes 52 3.3.3 Wettability of fabricated electrodes 54 3.3.4 Electrical behavior of fabricated electrodes 56 3.3.5 MEC performance 57 3.3.6 Biocompatibility 59 3.3.7 COD removal and coulombic efficiency 61 3.4 Conclusions 62 3.5 references 63 Chapter 4. Conclusion 69 Academic achievement 70 감사의 글 74 -
dc.language eng -
dc.publisher 한국해양대학교 대학원 -
dc.rights 한국해양대학교 논문은 저작권에 의해 보호받습니다. -
dc.title Electrode modification for improving the performance of bioelectrochemical cell -
dc.type Dissertation -
dc.date.awarded 2020. 2 -
dc.contributor.department 대학원 토목환경공학과 -
dc.contributor.affiliation 한국해양대학교 대학원 토목환경공학과 -
dc.description.degree Master -
dc.identifier.bibliographicCitation 최윤정. (2020). Electrode modification for improving the performance of bioelectrochemical cell. -
dc.title.translated 전극 개질을 통한 생물전기화학전지 효율 향상 -
dc.identifier.holdings 000000001979▲200000001565▲200000283934▲ -
Appears in Collections:
해운항만물류학과 > Thesis
Files in This Item:
200000283934.pdf Download

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse