한국해양대학교

Detailed Information

Metadata Downloads

Hydrodynamic performance comparison between the outflow of the breakwater oscillating water column (OWC's) devices and offshore OWC device attached to an offshore structure by using Computational Fluid Dynamics (CFD) analysis.

Title
Hydrodynamic performance comparison between the outflow of the breakwater oscillating water column (OWC's) devices and offshore OWC device attached to an offshore structure by using Computational Fluid Dynamics (CFD) analysis.
Author(s)
MOUSA SH M A ALENEZI
Issued Date
2020
Publisher
Graduate School of Korea Maritime and Ocean University
URI
http://repository.kmou.ac.kr/handle/2014.oak/12339
http://kmou.dcollection.net/common/orgView/200000283959
Abstract
The oscillating water column (OWC) Device is a type of wave energy converters (WEC), as it intends to transform energy from wave energy at sea into electricity by using the wave heaving to move confined air and thus drive an air turbine to generate the power.
Furthermore, this thesis manages the hydrodynamic analysis of two types of the oscillating water column (OWC) devices that are gliding freely in limited profundity waters and presented in the activity of standard surface waves. The hydrodynamic analysis, the comparison was made by applying the technique of Computational Fluid Dynamics (CFD) analysis. The significant agreement that CFD is an extremely encouraging device that an originator can utilize it to explore and survey gadget survivability under various conditions upon further approvals in different wave conditions, This method provided an efficient tool for complete hydrodynamic analysis of these devices, the hydrodynamic pressure Parameters; and by using the inputs of wave’s characteristics in the Arabian Gulf Area which have an average historical wave height of 1m. The OWC chamber model used in previous experiments has detailed that it is for the breakwater and for the offshore OWC using the inner diameter, which achieves the same cross-sectional area with the breakwater chamber.
A numerical model and Numerical Wave Tank (NWT) established to evaluate the interaction of an OWC with the water in different cases of different depths of the sea. ANSYS is used here to find the effects of the water surface in and around the central column, breakwater-mounted OWC, and calculate the equations of Navier-Stokes to get the vertical component of air entering and exiting the vent of the OWC.
After modeling and analysis of the output flow, we got to conclusions for the hydrodynamic performance of the breakwater chamber shows higher efficiency than the open ocean fixed OWC, in addition to that the variation of the energy with the wave steepness.
Appears in Collections:
해운항만물류학과 > Thesis
Files in This Item:
200000283959.pdf Download

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse