한국해양대학교

Detailed Information

Metadata Downloads

Adoption of Robotic Process Automation Techniques: Emissions Trading Big Data Crawling System

DC Field Value Language
dc.contributor.advisor Huh, Jun Ho -
dc.contributor.author THAI HONG DANH -
dc.date.accessioned 2022-06-23T08:57:42Z -
dc.date.available 2022-06-23T08:57:42Z -
dc.date.created 20220308093447 -
dc.date.issued 2022 -
dc.identifier.uri http://repository.kmou.ac.kr/handle/2014.oak/12840 -
dc.identifier.uri http://kmou.dcollection.net/common/orgView/200000603048 -
dc.description.abstract In the context countries around the globe are paying more attention to environmental issues, policies to tighten emissions are also being promulgated by many countries and regions recently. Under the Paris Agreement on climate change, emission trade exchange is a direction to gather and attract green financial flows for investment in sustainable development, contributing to emission reduction commitments. For enterprises, emission can be defined as another type of manageable asset. If they exceed the quota, they have to pay for it. And if they don't use it all, they bring it to the exchange market to sell to other businesses. Thus, the number of emissions trading systems in the global is increasing, including national or sub-national systems. This big data created from the systems can be collected and analyzed for the decision-making process in trading systems. Robotic process automation is a valuable technology to reduce and automate repetitive tasks by simulating human workflow. RPA technology can conduct repetitive routines and result in a more efficient and effective workflow as well as reduce the mistakes of human working. The research focuses on how RPA crawling bot can be used to automatic process data extraction in the emission trading websites into format input data type (Comma Separated Values - CSV files) of the operational data store for both IT and non-IT users every day. To get the aim, I propose a high-level RPA system architecture, which can crawl big data from multiple data sources and pre-process before being stored in the main database. I also integrate Apache Airflow to monitor all processes of the RPA crawling bot. Finally, I show an experimental prototype of a robotic automation process system that can crawl trading data in real-time. This research will be a valuable reference document in the future real trading market by providing this method to improve accuracy as well as the ability to crawl gas emission trading data, which is more essential and hard to predict nowadays. -
dc.description.tableofcontents 1. Introduction 1 2. Related Research 5 2.1 Emission Trading Big Data 5 2.1.1 Concept of Emission Trading Exchange 6 2.1.2 Carbon Trade Big Data 8 2.2 Big Data Crawling Technique 9 2.3 Robotic Process Automation Supporting Crawling Data 12 3. Design and Implementation of Building Emissions Trading Big Data Crawling System 15 3.1 Research Methodology 15 3.2 Investigate data sources and process 16 3.3 Design Workflow and Architecture 18 4. Building Emissions Trading Big Data Crawling System 20 4.1 RPA Crawling Data Bot 20 4.2 Python Program Data Processing 25 4.3 Confirmation Email and Insert Data into Database 27 5. Result and Discussion 28 5.1 Result of Crawled Data Process 28 5.2 Result of Visualization Crawled Data 29 5.3 Proposed advanced architecture 31 6. Conclusion 33 -
dc.format.extent 46 -
dc.language eng -
dc.publisher 국립한국해양대학교 대학원 -
dc.rights 한국해양대학교 논문은 저작권에 의해 보호받습니다. -
dc.title Adoption of Robotic Process Automation Techniques: Emissions Trading Big Data Crawling System -
dc.type Dissertation -
dc.date.awarded 2022. 2 -
dc.embargo.liftdate 2022-12-31 -
dc.contributor.department 대학원 데이터정보학과 -
dc.contributor.affiliation 국립한국해양대학교 대학원 -
dc.description.degree Master -
dc.identifier.bibliographicCitation [1]THAI HONG DANH, “Adoption of Robotic Process Automation Techniques: Emissions Trading Big Data Crawling System,” 국립한국해양대학교 대학원, 2022. -
dc.subject.keyword Robotic Process Automation -
dc.subject.keyword Emission Trade Exchange -
dc.subject.keyword Carbon Credit -
dc.subject.keyword Big Data -
dc.subject.keyword Crawling Bot -
dc.contributor.specialty 데이터정보학 -
dc.identifier.holdings 000000001979▲200000002763▲200000603048▲ -
Appears in Collections:
기타 > 기타
Files in This Item:
There are no files associated with this item.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse