한국해양대학교

Detailed Information

Metadata Downloads

방해요소가 포함된 RGB-D 센서 기반 깊이 이미지에서 조선 조립공정의 수동 용접자세 인식

DC Field Value Language
dc.contributor.advisor 남종호 -
dc.contributor.author 김준현 -
dc.date.accessioned 2022-06-23T08:58:09Z -
dc.date.available 2022-06-23T08:58:09Z -
dc.date.created 20220308093443 -
dc.date.issued 2022 -
dc.identifier.uri http://repository.kmou.ac.kr/handle/2014.oak/12910 -
dc.identifier.uri http://kmou.dcollection.net/common/orgView/200000603084 -
dc.description.abstract It is a significant process to predict man-hours, a key factor in ship production planning, as accurately as possible. The proportion of welding work in total man-hours required for ship construction has been perceived to be large, and welding man-hours are greatly affected by working posture. Continuous research has been conducted to identify the posture in the welding operation by utilizing the relationship between man-hours and working posture. However, the results that quickly and conveniently reflect the effect of the welding posture on man-hours are not available. An important factor in recognizing working posture is that the measuring process does not interfere with the field workers, and the results of the working posture should be immediately available. Although studies on posture recognition based on depth image analysis are being positively reviewed, welding operation, unlike the other operations in the field, has difficulties in image interpretation because an external obstacle caused by arcs exists, and the depth image is consequently distorted. Therefore, for correct image analysis, any obstacle element must be removed in advance. This study proposes a method to acquire work postures using a low-cost RGB-D camera and recognize the welding position through image analysis. It searches for and removes obstacles that appear as depth holes in the depth image, and then restores the removed part to the desired state using the depth image's surrounding depth information. Following the establishment of the criteria for classifying the welding positions, the joint body coordinates are extracted from the restored image in order to identify the correct welding position. A Convolution Neural Network is used to train the established criteria, and the corresponding welding position is determined. The restored image showed significantly improved recognition accuracy than the image distorted by depth holes. The proposed method acquires, analyzes, and automates the recognition of welding positions in real-time. The principles used in the method can be applied to the welding field and all work areas where image interpretation is difficult due to obstacles. -
dc.description.tableofcontents 1. 서론 1 1.1 연구 배경 1 1.2 선행 연구 2 1.2.1 선박 생산 시수 및 용접자세 2 1.2.2 모션 캡쳐 시스템 5 1.2.3 Depth hole filling 7 1.2.4 기계학습 기반의 자세 인식 9 1.3 연구 목표 및 개요 10 2. 깊이 이미지 분석 및 관절 좌표 식별 12 2.1 Depth hole 탐지 12 2.2 Depth hole 제거 18 2.3 2D 관절 좌표 식별 19 2.4 3D 관절 좌표 재설정 21 3. 자세 인식 24 3.1 용접자세 구분 기준 24 3.2 CNN 모델 27 3.3 Data set 29 3.4 용접자세 인식 33 4. 결론 38 4.1 요약 38 4.2 향후 과제 39 참고문헌 41 -
dc.format.extent 48 -
dc.language kor -
dc.publisher 한국해양대학교 대학원 -
dc.rights 한국해양대학교 논문은 저작권에 의해 보호받습니다. -
dc.title 방해요소가 포함된 RGB-D 센서 기반 깊이 이미지에서 조선 조립공정의 수동 용접자세 인식 -
dc.title.alternative Recognition of manual welding posture in shipbuilding assembly process from RGB-D sensor-based depth images with obstructions -
dc.type Dissertation -
dc.date.awarded 2022. 2 -
dc.embargo.liftdate 2022-03-08 -
dc.contributor.alternativeName Kim Jun Hyeon -
dc.contributor.department 대학원 조선해양시스템공학과 -
dc.contributor.affiliation 한국해양대학교 대학원 조선해양시스템공학과 -
dc.description.degree Master -
dc.identifier.bibliographicCitation [1]김준현, “방해요소가 포함된 RGB-D 센서 기반 깊이 이미지에서 조선 조립공정의 수동 용접자세 인식,” 한국해양대학교 대학원, 2022. -
dc.subject.keyword 용접자세 -
dc.subject.keyword 모션 캡쳐 -
dc.subject.keyword 방해 요소 -
dc.subject.keyword 합성곱 신경망 -
dc.subject.keyword 3차원 깊이 센서 -
dc.subject.keyword 조선 조립공정 -
dc.contributor.specialty 이미지 프로세싱 및 생산 시뮬레이션 -
dc.identifier.holdings 000000001979▲200000002763▲200000603084▲ -
Appears in Collections:
기타 > 기타
Files in This Item:
There are no files associated with this item.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse