난분해성 유기 오염물질 분해를 위한 액상 플라즈마의 응용
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | 이승효 | - |
dc.contributor.author | 김의준 | - |
dc.date.accessioned | 2024-01-03T17:28:51Z | - |
dc.date.available | 2024-01-03T17:28:52Z | - |
dc.date.created | 2023-03-03 | - |
dc.date.issued | 2023 | - |
dc.identifier.uri | http://repository.kmou.ac.kr/handle/2014.oak/13162 | - |
dc.identifier.uri | http://kmou.dcollection.net/common/orgView/200000671284 | - |
dc.description.abstract | Although the number of vessels with exhaust gas cleaning systems (EGCSs or scrubbers) has sharply increased to comply with strengthened regulations for marine environment, secondary pollutions are caused by discharged polycyclic aromatic hydrocarbons (PAHs). While conventional processes, such as physical processes, chemical processes, and biological processes, have been applied to remediate PAH-contaminated environments, drawbacks are still existing, such as the need of additional treatment for degradation, the use of chemical reagents, neutralization, and long treatment time. Here, two approaches are investigated to remediate water contaminated with PAHs using liquid phase plasma (LPP); one of them is direct decomposition of PAHs by LPP under diverse electrical discharge conditions, and the other one is a degradation of PAHs by photocatalysts synthesized using LPP. For the direct decomposition of PAHs, the performance of LPP is evaluated with 10-30 kHz of frequency and 1-3 μs of pulse width. The increased frequency and pulse width enhanced the degradation efficiency, and 93.3, 90.7, 86.0, and 85.4% for Nap, Ace, Flu, and Phe, respectively, are degraded at a frequency of 30 kHz and pulse width of 3 μs. Considering physical condition of the plasma, long pulse width accelerated electrons, leading to increased generation of active species from intensified collision between electrons and surrounding molecules. Conversely, high frequency decelerated electrons due to the excessive changes in the polarity. However, the increased number of plasma discharges results in the generation of numerous active species. Generations of •OH and O radicals are confirmed by optical emission spectrometer and electron paramagnetic resonance. In addition, changes in functional groups which are corresponding to hydroxyl and oxygen groups are identified by Fourier transform infrared spectroscopy. For the secondary degradation of PAHs by LPP, BL-ZnO and Ag/BL-ZnO photocatalysts are synthesized using Zn and Ag electrodes at 30 kHz of frequency and 3 μs of pulse width with 10 min of treatment time. The chemical structure and states of synthesized photocatalysts are analysed by X-ray diffraction and X-ray photoelectron spectroscopy. The morphology and chemical composition are examined by scanning electrode microscope and energy dispersive spectrometer. The optical properties of photocatalysts are studied using UV-Vis diffuse reflectance spectrometer and photoluminescence spectrometer. In addition, synthetic mechanism is suggested based on the erosion of electrodes, generated active species, and formation of functional groups on synthesized ZnO. BL-ZnO shows enhanced performance due to the oxygen vacancy which prohibits the recombination of electrons and holes. Ag/BL-ZnO achieves the highest performance and it is assumed that the Ag plays a role of electron acceptor and forbids recombination of electron and hole. | - |
dc.description.tableofcontents | 1. 서 론 1 1.1 연구 배경 1 1.1.1 해양 대기오염 규제 강화 및 대안 1 1.1.2 다환방향족탄화수소의 유해성 3 1.2 연구 동향 9 1.2.1 물리적 처리 공정 9 1.2.2 화학적 처리 공정 10 1.2.3 생물학적 처리 공정 11 1.2.4 플라즈마 처리 공정 12 1.2.5 고도 산화 공정 (광촉매) 13 1.2.6 액상 플라즈마 공정 14 1.3 연구 목적 17 2. 액상 플라즈마를 이용한 스크러버 세정수 내 다환방향족탄화수소 분해: 전기적 방전 조건의 영향 18 2.1 실험 방법 18 2.1.1 실험 조건 18 2.1.2 분석 방법 22 2.1.3 연구 추진도 26 2.2 실험 결과 27 2.2.1 액상 플라즈마 진단 27 2.2.2 전기적 방전 조건에 따른 분해 성능 32 2.2.3 화학적 활성종에 의한 유기 오염물질의 분해 37 2.2.4 액상 플라즈마 반응장에 대한 해석 40 2.2.5 실제 스크러버 세정수 처리에 적용된 액상 플라즈마 44 3. 액상 플라즈마를 이용한 Black ZnO 합성 47 3.1 Black ZnO 47 3.2 실험 방법 49 3.2.1 실험 조건 49 3.2.2 분석 방법 50 3.2.3 연구 추진도 53 3.3 실험 결과 54 3.3.1 화학적 구조 및 결합 54 3.3.2 입자 형상 및 화학 조성 58 3.3.3 광촉매의 광학적 특성 59 3.3.4 광촉매 합성 메커니즘 63 3.3.5 광촉매 성능 평가 66 4. 결론 68 참 고 문 헌 70 | - |
dc.language | kor | - |
dc.publisher | 한국해양대학교 대학원 | - |
dc.rights | 한국해양대학교 논문은 저작권에 의해 보호받습니다. | - |
dc.title | 난분해성 유기 오염물질 분해를 위한 액상 플라즈마의 응용 | - |
dc.title.alternative | Application of Liquid Phase Plasma to Degrade Persistent Organic Pollutants | - |
dc.type | Dissertation | - |
dc.date.awarded | 2023-02 | - |
dc.embargo.terms | 2023-03-03 | - |
dc.contributor.department | 대학원 조선기자재공학과 | - |
dc.contributor.affiliation | 한국해양대학교 대학원 조선기자재공학과 | - |
dc.description.degree | Master | - |
dc.identifier.bibliographicCitation | 김의준. (2023). 난분해성 유기 오염물질 분해를 위한 액상 플라즈마의 응용. | - |
dc.identifier.holdings | 000000001979▲200000003272▲200000671284▲ | - |
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.