한국해양대학교

Detailed Information

Metadata Downloads

레이저 분광 영상 기반 CNN을 이용한 고온로 온도 예측 연구

DC Field Value Language
dc.contributor.advisor 윤성환 -
dc.contributor.author 이정훈 -
dc.date.accessioned 2024-01-03T17:28:56Z -
dc.date.available 2024-01-03T17:28:56Z -
dc.date.created 2023-03-03 -
dc.date.issued 2023 -
dc.identifier.uri http://repository.kmou.ac.kr/handle/2014.oak/13171 -
dc.identifier.uri http://kmou.dcollection.net/common/orgView/200000666901 -
dc.description.abstract In this manuscript, purpose to predict the internal temperature of a high-temperature furnace using a convolutional neural network (CNN). Experiments data was based on hyperspectral image, rather than the CT-TDLAS method using laser absorption spectroscopy and was constructed to the image of spectral bands by laser spectroscopy that passed through a high-temperature furnace. Through repetitive experiments, a total of 20,000 data were composed of the measurement range of temperature 25 ℃ to 800 ℃. Based on these data, the study was conducted by predict the temperature of spectroscopy image using CNN. Learning was conducted with data obtained by dividing the number of the output layer by 10 instead of 775. When learning the output layer divided into 10, the verification data showed 89.79% accuracy and the test data showed 88.73%. When the Gaussian sub-pixel interpolation was applied to make up for accuracy, the accuracy was 90.49%, it was improve by about 1.75%. When the number of output layers was set to 4, accuracy of the test data was the best, and it was confirmed that the optimal model could be configured by adjusting the number of output layers according to the data. Through these research results, the possibility of industrial application development of a measurement system using laser spectroscopic image was confirmed. -
dc.description.tableofcontents 1. 서론 1 1.1 연구 배경 및 동향 1 1.2 연구내용 및 방법 4 2. 고온로 장치 레이저 측정 실험 6 2.1 TDLAS(가변 다이오드 흡수 분광법) 6 2.2 초분광 영상(Hyperspectral Imaging, HSI) 7 2.2.1 초분광 기술 7 2.2.2 초분광 기술 종류 8 2.2.3 초분광 시스템 9 2.2.4 분광기 9 2.3 고온로 실험 장치 구성 10 2.4 실험 절차 22 2.4.1 교정(Calibration) 22 2.4.2 영상데이터 저장(Imaging data recording) 24 2.4.3 온도 측정 실험 24 2.5 실험 결과 25 3. 인공지능 26 3.1 신경망 모델 26 3.2 인공지능 학습 31 3.2.1 데이터 전처리(Data preprocessing) 31 3.2.2 모델 평가 지표 35 3.2.3 Convolution layer 변경 예측 결과 37 3.2.4 Dense layer 변경 예측 결과 39 3.2.5 Batch size 변경 예측 결과 42 3.2.6 출력층 변경 예측 결과 45 3.3 신경망 모델 평가 47 4. 결론 및 고찰 50 참고문헌 52 국문초록 57 -
dc.language kor -
dc.publisher 한국해양대학교 대학원 -
dc.rights 한국해양대학교 논문은 저작권에 의해 보호받습니다. -
dc.title 레이저 분광 영상 기반 CNN을 이용한 고온로 온도 예측 연구 -
dc.title.alternative Study on prediction of the temperature over high-temperature furnace using convolutional neural network based on laser hyperspectral image -
dc.type Dissertation -
dc.date.awarded 2023-02 -
dc.embargo.terms 2023-03-03 -
dc.contributor.alternativeName Lee JeongHun -
dc.contributor.department 대학원 기관시스템공학과 -
dc.contributor.affiliation 한국해양대학교 대학원 기관시스템공학과 -
dc.description.degree Master -
dc.identifier.bibliographicCitation 이정훈. (2023). 레이저 분광 영상 기반 CNN을 이용한 고온로 온도 예측 연구. -
dc.subject.keyword 가변 레이저 흡수 분광법, 초분광 영상, 합성곱 신경망, 가우시안 서브 픽셀 보간법 -
dc.identifier.holdings 000000001979▲200000003272▲200000666901▲ -
Appears in Collections:
기타 > 기타
Files in This Item:
There are no files associated with this item.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse