레이저 분광 영상 기반 CNN을 이용한 고온로 온도 예측 연구
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | 윤성환 | - |
dc.contributor.author | 이정훈 | - |
dc.date.accessioned | 2024-01-03T17:28:56Z | - |
dc.date.available | 2024-01-03T17:28:56Z | - |
dc.date.created | 2023-03-03 | - |
dc.date.issued | 2023 | - |
dc.identifier.uri | http://repository.kmou.ac.kr/handle/2014.oak/13171 | - |
dc.identifier.uri | http://kmou.dcollection.net/common/orgView/200000666901 | - |
dc.description.abstract | In this manuscript, purpose to predict the internal temperature of a high-temperature furnace using a convolutional neural network (CNN). Experiments data was based on hyperspectral image, rather than the CT-TDLAS method using laser absorption spectroscopy and was constructed to the image of spectral bands by laser spectroscopy that passed through a high-temperature furnace. Through repetitive experiments, a total of 20,000 data were composed of the measurement range of temperature 25 ℃ to 800 ℃. Based on these data, the study was conducted by predict the temperature of spectroscopy image using CNN. Learning was conducted with data obtained by dividing the number of the output layer by 10 instead of 775. When learning the output layer divided into 10, the verification data showed 89.79% accuracy and the test data showed 88.73%. When the Gaussian sub-pixel interpolation was applied to make up for accuracy, the accuracy was 90.49%, it was improve by about 1.75%. When the number of output layers was set to 4, accuracy of the test data was the best, and it was confirmed that the optimal model could be configured by adjusting the number of output layers according to the data. Through these research results, the possibility of industrial application development of a measurement system using laser spectroscopic image was confirmed. | - |
dc.description.tableofcontents | 1. 서론 1 1.1 연구 배경 및 동향 1 1.2 연구내용 및 방법 4 2. 고온로 장치 레이저 측정 실험 6 2.1 TDLAS(가변 다이오드 흡수 분광법) 6 2.2 초분광 영상(Hyperspectral Imaging, HSI) 7 2.2.1 초분광 기술 7 2.2.2 초분광 기술 종류 8 2.2.3 초분광 시스템 9 2.2.4 분광기 9 2.3 고온로 실험 장치 구성 10 2.4 실험 절차 22 2.4.1 교정(Calibration) 22 2.4.2 영상데이터 저장(Imaging data recording) 24 2.4.3 온도 측정 실험 24 2.5 실험 결과 25 3. 인공지능 26 3.1 신경망 모델 26 3.2 인공지능 학습 31 3.2.1 데이터 전처리(Data preprocessing) 31 3.2.2 모델 평가 지표 35 3.2.3 Convolution layer 변경 예측 결과 37 3.2.4 Dense layer 변경 예측 결과 39 3.2.5 Batch size 변경 예측 결과 42 3.2.6 출력층 변경 예측 결과 45 3.3 신경망 모델 평가 47 4. 결론 및 고찰 50 참고문헌 52 국문초록 57 | - |
dc.language | kor | - |
dc.publisher | 한국해양대학교 대학원 | - |
dc.rights | 한국해양대학교 논문은 저작권에 의해 보호받습니다. | - |
dc.title | 레이저 분광 영상 기반 CNN을 이용한 고온로 온도 예측 연구 | - |
dc.title.alternative | Study on prediction of the temperature over high-temperature furnace using convolutional neural network based on laser hyperspectral image | - |
dc.type | Dissertation | - |
dc.date.awarded | 2023-02 | - |
dc.embargo.terms | 2023-03-03 | - |
dc.contributor.alternativeName | Lee JeongHun | - |
dc.contributor.department | 대학원 기관시스템공학과 | - |
dc.contributor.affiliation | 한국해양대학교 대학원 기관시스템공학과 | - |
dc.description.degree | Master | - |
dc.identifier.bibliographicCitation | 이정훈. (2023). 레이저 분광 영상 기반 CNN을 이용한 고온로 온도 예측 연구. | - |
dc.subject.keyword | 가변 레이저 흡수 분광법, 초분광 영상, 합성곱 신경망, 가우시안 서브 픽셀 보간법 | - |
dc.identifier.holdings | 000000001979▲200000003272▲200000666901▲ | - |
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.