한국해양대학교

Detailed Information

Metadata Downloads

AMF기술을 적용한 SWRO 생산수의 잔류붕소제거 및 해수로부터의 붕소회수에 관한 연구

DC Field Value Language
dc.contributor.author 정성수 -
dc.date.accessioned 2017-02-22T02:16:31Z -
dc.date.available 2017-02-22T02:16:31Z -
dc.date.issued 2013 -
dc.date.submitted 2013-01-21 -
dc.identifier.uri http://kmou.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002174171 ko_KR
dc.identifier.uri http://repository.kmou.ac.kr/handle/2014.oak/8123 -
dc.description.abstract In this study, we have developed an efficient technique to remove boron from SWRO permeate water (1.51 mg B/L) and recover it from seawater (4.5 mg B/L) based on the adsorption membrane filtration (AMF) process. CRB05, a commercial boron selective resin (BSR) produced in Mitsubishi chemical Co., is used as an adsorbent. The commercial BSR (300-850um) is grinded to make fine-grain BSR with diameter 10-3000um. The performance by the fine-grain BSR is compared with that by the commercial BSR without grinding for each process of AMF (boron adsorption by BSR, boron desorption from saturated BSR using acid, and regeneration of BSR using base). In the process of boron adsorption from SWRO permeate water, the optimal performance is achieved at 1 g/L of BSR/solution ratio, 150 rpm of stirring speed, and 10 min of reaction time by using the fine-grain BSR, which results in maximum adsorption capacity of 11.68mg B/g BSR. Particularly the reaction time using the fine-grain BSR is shortened by 6 times compared to the commercial BSR. Furthermore, the adsorption capacity is increased by 3 times. In the process of boron adsorption from seawater, on the other hand, the optimal performance occurs at 0.1 g/L of BSR/solution ratio, 100 rpm of stirring speed, and 5 min of reaction time by using the fine-grain BSR, where the reaction time is 60 times shorter than that by the commercial BSR. In the meantime, there is no noticeable difference between SWRO permeate water and seawater in the efficiency of boron desorption from saturated BSR using sulfuric acid and hydrochloric acid. The optimal concentration and volume of sulfuric acid are 0.05M and 1.6L/kg-BSR, respectively, while those of hydrochloric acid are 0.25M and 2.2L/kg-BSR, respectively. Up to 100% of boron is desorbed under the optimal conditions. It is found that both commercial and fine-grain BSRs can be reused with only ±3% of variance in the efficiency of adsorption. The desorbed boron in acid solution is solidified into B(OH)3 by heating and cooling. In addition, the solid boron is formed as sodium borate and calcium borate by reacting with NaOH and Ca(OH)2, respectively, at 140℃. -
dc.description.tableofcontents 1. 서 론 2. 문헌 고찰 2.1 붕소 2.1.1 붕소의 화학적 특성 2.1.2 붕소의 위해성 2.1.3 붕소농도 측정방법 2.1.4 SWRO에서의 붕소제거 2.1.5 세계붕소매장량 및 국내 수입현황 2.1.6 BSR의 붕소흡착반응 특성 2.2 국내·외 연구동향 2.2.1 국외 연구동향 2.2.2 국내 연구동향 3. 실험재료 및 방법 3.1 실험재료 3.1.1 시료채취 2.1.2 BSR선정 및 가공 3.2 붕소흡착반응 3.2.1 반응시간에 따른 붕소흡착 3.2.2 진탕속도에 따른 붕소흡착 3.2.3 BSR투입량에 따른 붕소흡착 3.2.4 BSR 미립자화에 의한 최대붕소흡착량 변화 3.2.5 붕소흡착의 방해원소 규명 3.3 붕소탈착반응 3.3.1 탈착용매 최적농도 결정 3.3.2 탈착용매 최적부피 결정 3.4 붕소석출 3.3.1 가열·농축에 의한 붕소화합물 석출 3.3.2 알칼리화에 의한 붕소화합물 석출 3.5 BSR의 재생 및 재사용 4. 실험결과 및 고찰 4.1 실험재료 분석 4.1.1 SWRO 생산수 및 해수의 성분분석 4.1.2 미립자화한 BSR의 입도분석 4.2 붕소흡착반응 4.2.1. 반응시간에 따른 붕소흡착 4.2.2. 진탕속도에 따른 붕소흡착 4.2.3. BSR투입량에 따른 붕소흡착 4.2.4. BSR 미립자화에 의한 최대붕소흡착량 변화 4.2.5. 붕소흡착의 방해원소 규명 4.3 붕소탈착반응 4.3.1. 탈착용매 최적농도 결정 4.3.2. 탈착용매 최적부피 결정 4.4 붕소석출 4.4.1. 가열·농축에 의한 붕소화합물 석출 4.4.2. 알칼리화에 의한 붕소화합물 석출 4.5 BSR의 재생 및 재사용 5. 결론 6. 참고문헌 -
dc.language kor -
dc.publisher 한국해양대학교 대학원 -
dc.title AMF기술을 적용한 SWRO 생산수의 잔류붕소제거 및 해수로부터의 붕소회수에 관한 연구 -
dc.title.alternative AMF기술을 적용한 SWRO 생산수의 잔류붕소제거 및 해수로부터의 붕소회수에 관한 연구 -
dc.type Thesis -
dc.date.awarded 2013-02 -
dc.contributor.alternativeName Jung -
dc.contributor.alternativeName Sungsu -
Appears in Collections:
토목환경공학과 > Thesis
Files in This Item:
000002174171.pdf Download

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse