Ice Resistance Prediction Method Based on Icebreaking Pattern and Ice-Hull Contact Conditions
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 정성엽 | - |
dc.date.accessioned | 2017-02-22T02:22:20Z | - |
dc.date.available | 2017-02-22T02:22:20Z | - |
dc.date.issued | 2016 | - |
dc.date.submitted | 2016-03-12 | - |
dc.identifier.uri | http://kmou.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002240730 | ko_KR |
dc.identifier.uri | http://repository.kmou.ac.kr/handle/2014.oak/8291 | - |
dc.description.abstract | A ship’s resistance in level ice is a fairly significant concern from a design point of view, and thus many types of related research are underway, including studies of ice and hull interaction, icebreaking patterns, and pressure-area effects. Meanwhile, various semi-empirical or analytical methods and numerical models are being developed to predict a ship’s resistance in ice. This study investigates ice-hull interaction phenomena and develops a numerical model that can determine ice resistance based on icebreaking patterns and ice-hull contact conditions. The characteristics of icebreaking patterns for the hull form, ship speed, and ice properties are analyzed, and two ice-hull contact cases are considered: one for triangular and one for quadrilateral crushing during the ice-hull interaction. In addition, normal crushing displacement is calculated based on the relationship between indentation energy and kinetic energy. To calculate normal contact force, the pressure-area effect is applied and parameters used in the pressure-area equation are selected based on the full-scale ice load measurement results of the Korean icebreaker Araon, which operated in the Beaufort Sea in 2010. To determine the failure criteria of ice, an ice sheet is assumed to be a semi-infinite plate on an elastic foundation. The maximum load at which the ice fails is then determined. In the numerical model, a numerical integration method is used to analyze the ship’s motions and the ice resistance characteristics. The predicted results from this model are compared with the model test results, showing relatively good correlation regarding the prediction of ship resistance in level ice. The presented method should be useful for future studies of ship performance in ice and ice resistance prediction at the design stage of a vessel. In addition, the developed numerical model can contribute to the Korea Research Institute of Ships and Ocean Engineering (KRISO) ice tank, by helping to predict the preliminary ice resistance of vessels, given various ice conditions and hull forms. | - |
dc.description.abstract | 평탄빙에서 선박의 저항은 설계 관점에서 매우 중요한 관심 사항이다. 따라서 빙-선체 상호작용과 쇄빙패턴, 압력-면적 효과를 포함하는 다양한 연구들이 수행되고 있으며, 선박에 작용하는 빙저항을 추정하기 위해 다양한 준 경험적 또는 해석적 방법들과 수치모델들이 개발되고 있다. 본 연구에서는 빙-선체 상호작용 현상에 관한 연구와 함께 쇄빙패턴과 빙-선체 접촉조건을 고려한 빙저항 추정용 수치모델을 개발하였다. 선형과 선속, 빙특성을 고려한 쇄빙패턴 특성이 분석되었고 빙-선체 충돌 시 삼각형 충돌과 다각형 충돌 같은 두 가지 빙-선체 접촉조건이 고려되었다. 또한 충돌에 따른 수직 관입변위는 관입에너지와 운동에너지와의 관계를 통해 계산되었다. 수직한 방향의 접촉력을 계산하기 위해 압력-면적 효과가 적용되었고 압력-면적 효과식에 사용되는 변수들은 2010년 북극 보퍼트해에서 쇄빙연구선 아라온호의 실선 빙하중 계측자료를 바탕으로 도출되었다. 빙판의 파괴기준을 정의하기 위해 빙판은 탄성기초 위 반무한평판으로 고려되었고 빙판의 파괴를 위한 최대하중이 정의되었다. 또한 수치모델에서는 선박의 운동과 빙저항 특성을 해석하기 위해 수치적분법이 적용되었다. 특히 개발된 모델을 통해 추정된 빙저항 결과는 모형시험 결과와 비교 시 비교적 우수한 상관성을 나타내었다. 본 연구에서 도출된 기법은 선박의 설계단계에서 선박의 빙성능과 빙저항 추정을 위한 연구에 활용이 가능하며, 개발된 수치모델은 선박해양플랜트연구소 빙해수조에서 다양한 빙상환경에 따른 선형을 고려한 선박의 초기 빙저항 추정 연구에 기여할 수 있을 것으로 판단된다. | - |
dc.description.tableofcontents | 1. Introduction 1 1.1 Objectives 1 1.2 Approaches and Methodology 4 1.3 Organization of Thesis 5 2. Reviews on Ice Resistance Prediction 6 2.1 Empirical and Analytical Approaches 6 2.2 Numerical Approaches 9 3. Development of Ice Resistance Prediction Model 14 3.1 Ship Resistance in Ice 14 3.1.1 Icebreaking Pattern in Level Ice 18 3.1.2 Definition of Ice and Hull Contact Conditions 32 3.2 Calculation of Ship Resistance in Ice 40 3.2.1 Contact Force and Pressure-Area Effect 40 3.2.2 Failure Criterion of Ice 46 3.2.3 Resistance Components in Ice 49 3.3 Motion Analysis by Numerical Integration 53 4. Comparison of Ice Resistance between Predictions 58 4.1. Experimental Test in Ice Tank 58 4.1.1 Overview of Test Facility 58 4.1.2 Preparation of Model Ice and Material Properties Measurement 61 4.1.3 Description of Model Ships and Test Conditions 70 4.1.4 Analysis Procedures of Model Tests 74 4.1.4.1 Correction of Deviations in Ice Thickness and Strength 77 4.1.4.2 Correction of Scale Effect 78 4.2. Discussions 79 4.2.1 Analysis of Icebreaking Patterns 80 4.2.2 Effect of Number of Ice Cusps 84 4.2.3 Open-water and Ice Resistance Characteristics 87 4.2.4 Comparison of Ice Resistance between Predictions and Test Results 106 5. Conclusions and Recommendations 115 5.1. Conclusions 115 5.2. Recommendations 118 References Appendix A. Photographs of Icebreaking Patterns for Icebreaking Model Ships Appendix B. Difference between KRISO Method and HSVA Method in Correction | - |
dc.language | eng | - |
dc.publisher | 한국해양대학교 대학원 | - |
dc.title | Ice Resistance Prediction Method Based on Icebreaking Pattern and Ice-Hull Contact Conditions | - |
dc.title.alternative | 쇄빙패턴과 빙-선체 접촉조건을 고려한 빙저항 추정기법 연구 | - |
dc.type | Thesis | - |
dc.date.awarded | 2016-02 | - |
dc.contributor.alternativeName | Seong-Yeob Jeong | - |
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.