한국해양대학교

Detailed Information

Metadata Downloads

베어링 강성을 고려한 초대형 컨테이너 운반선의 최적 추진축계 배치에 관한 연구

DC Field Value Language
dc.contributor.author 이재웅 -
dc.date.accessioned 2017-02-22T06:06:41Z -
dc.date.available 2017-02-22T06:06:41Z -
dc.date.issued 2011 -
dc.date.submitted 56959-08-17 -
dc.identifier.uri http://kmou.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002174966 ko_KR
dc.identifier.uri http://repository.kmou.ac.kr/handle/2014.oak/9106 -
dc.description.abstract Recently, damages of the main engine aftmost bearing and the after stern tube bearing tend to increase, as the shafting system becomes stiffer due to the large engine power, whereas the hull structure becomes more flexible due to optimization by using high tensile thin steel plates. Deferences of ship's draft condition and the thermal expansion are some common causative factor in the deformation of main engine bed and double bottom structure of engine room. And this is the reason that more sophisticated shaft alignments are required. Therefore, to obtain the optimum status in shafting alignment at the design stage, it is strongly recommended that the change of bearing reaction force depending on ballast/load condition, the bending moment force occurred by propeller thrust, elastic deformation of bearing occurred by vertical load of shaft mass and etc., should be considered. In this study, the optimum shafting alignment calculation was carried out, considering the number of main engine bearings, thermal expansion. and exploiting the sensitivity index, which indicates the reasonable position of forward intermediate shafting bearing for alignment. The optimal position of bearing in process for alignment is determined by sensitivity index, which is defined as follows. Sensitivity index = where, : Influence coefficient of intermediate bearing to ith bearing : Number of total bearings taken into consideration : Intermediate bearing number According to the above process, the optimal bearing position of forward intermediate shafting was confirmed with smallest sensitivity index. Finally, as the main subject in this study, the elastic deformation on main engine bearings occurred by vertical load of shaft mass were examined thoroughly and analysed allowable load of bearings, reaction influence numbers of all bearings. As the result, a reliable optimum shafting alignment was derived theoretically. To verify these results, they were referred to the engine maker's technical information of main engine installation and being used shafting alignment programmes of both Korean Register of Shipping and Det Norske Veritas, their reliability were confirmed. -
dc.description.tableofcontents 제1장 서 론 1 제2장 추진축계의 배치문제 및 설계개요 3 2.1 축계배치와 베어링 영향계수 3 2.2 축계배치에 있어서의 문제점 3 2.3 새로운 추진축계의 배치문제 5 2.4 추진축계 배치에 있어서 고려해야 할 사항 7 2.5 추진축계 배치계산의 종류와 의미 8 2.5.1 축계의 합리적인 배치 8 2.5.2 축계의 배치불량 8 2.5.3 축계배치 방법 9 2.5.4 추진축계 배치계산의 기준 10 제3장 유한요소법에 의한 축계배치 계산 이론 13 3.1 기본식 유도 13 3.1.1 횡하중과 모멘트하중을 받는 부등 단면보의 절점방정식 13 3.1.2 횡하중과 모멘트하중을 받는 보의 강성매트릭스 16 3.1.3 횡하중과 모멘트하중을 받는 부등단면보 절점방정식의 해법 17 3.1.4 반력 영향계수의 계산 19 3.2 추진축계의 최적배치 계산방법 21 3.2.1 축계의 최적배치 계산 21 3.2.2 축계의 선형성 22 3.2.3 선형계획 문제 24 3.3 갭과 색의 계산 26 3.4 베어링 반력의 이론적 계산과정 28 3.5 잭-업법(jack-up)을 이용한 실제의 베어링 지지하중 추정방법 31 3.6 잭-업법에 의한 베어링 반력 계측방법 32 제4장 실선 축계의 최적배치 방안 연구 34 4.1 이론에 의한 축계 베어링 반력해석 35 4.2 축계배치 최적화 안 38 4.2.1 주기관 베어링 개수 고려에 따른 반력 비교분석 38 4.2.2 열팽창 효과 고려에 따른 반력 비교분석 40 4.2.3 감도지수를 이용한 중간축 베어링 위치의 최적화 45 4.2.4 10,100 TEU 축계 배치도와 강체 베어링 반력 분석 49 4.2.5 강성을 고려한 베어링 반력 분석 52 제5장 결 론 63 참고 문헌 64 -
dc.language kor -
dc.publisher 한국해양대학교 대학원 -
dc.title 베어링 강성을 고려한 초대형 컨테이너 운반선의 최적 추진축계 배치에 관한 연구 -
dc.type Thesis -
dc.date.awarded 2011-02 -
Appears in Collections:
기관시스템공학과 > Thesis
Files in This Item:
000002174966.pdf Download

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse