석유회수증진을 위한 pH 민감성 폴리머의 인공신경망 점도 추정 모델 개발
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 강판상 | - |
dc.date.accessioned | 2017-02-22T06:18:45Z | - |
dc.date.available | 2017-02-22T06:18:45Z | - |
dc.date.issued | 2011 | - |
dc.date.submitted | 56959-08-17 | - |
dc.identifier.uri | http://kmou.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002175154 | ko_KR |
dc.identifier.uri | http://repository.kmou.ac.kr/handle/2014.oak/9319 | - |
dc.description.abstract | Polymer flooding is one of the most common technologies for enhanced oil recovery(EOR) by mobility and conformance control. However, it has technical problems such as high injection pressure with associated pumping cost, creation of unwanted injection well fractures and mechanical degradation of polymers due to high shear near wellbore. Recently the use of partially hydrolyzed polyacrylamide (HPAM) which is a pH-sensitive polymer has been proposed for overcoming the problems of polymer flooding. Since viscosity of pH-sensitive polymer could change up to several times depending on pH and salinity, commercial reservoir simulators cannot estimate its viscosity variations. This limited capability may cause severe errors in polymer flooding designs. Therefore, it is necessary to develop viscosity correlations applicable to pH-sensitive polymer. HCS(Huh-Choi-Sharma) model which combined modified Brannon-Peppas & Peppas model, modified Mark-Houwink equation, new power-law correlation and Carreau equation was proposed to compute the viscosity of HPAM solution. However, it has some problems such as necessary for empirical parameters and low accuracy in the case of high salinity and in the presence of divalent ions. In this study, artificial neural network (ANN) which is usually used to model complex and nonlinear relationships between inputs and outputs has been used to estimate viscosity of pH-sensitive polymer. The experimentally measured viscosity data of HPAM and Levenberg-Marquardt algorithm is used to train ANN viscosity model which is composed of the four layers, one input layer with six neurons containing pH, polymer concentration, degree of hydrolysis, molecular weight, salinity, and shear rate, one output layer with one neuron which is viscosity, two hidden layers with five neurons each. As a result of this study, ANN viscosity model which has only 6 input parameters without empirical parameter can estimate viscosity more precisely than HCS model which needs 21 parameters especially in high salinity condition. Unique features of ANN which are adaptive learning capabilities and expansibility could make ANN viscosity model to estimate viscosity more accurately and to be applicable to various conditions if sufficient data are available for training. ANN viscosity model suggested in this study could be implemented in an EOR process simulator for optimal mobility control applications. | - |
dc.description.tableofcontents | 제 1 장 서론 3 제 2 장 pH 민감성 폴리머주입법 5 제 1 절 기존 폴리머주입법의 개요 및 문제점 5 제 2 절 pH 민감성 폴리머의 정의 8 제 3 절 pH 민감성 폴리머주입법의 적용방법 및 장점 9 제 3 장 기존 폴리머 점도 추정 방법 11 제 1 절 일반 폴리머의 점도 추정 방법 11 제 2 절 HCS 모델을 이용한 pH 민감성 폴리머 점도 추정 방법 14 제 3 절 HCS 모델의 문제점 18 제 4 장 pH 민감성 폴리머의 인공신경망 점도 추정 모델 개발 20 제 1 절 인공신경망기법의 개요 20 제 2 절 학습 자료 및 학습 알고리즘 26 제 3 절 인공신경망 점도 추정 모델 구조 32 제 4 절 인공신경망 점도 추정 모델 검증 33 제 5 장 결론 41 참고문헌 45 부록 46 | - |
dc.language | kor | - |
dc.publisher | 한국해양대학교 대학원 | - |
dc.title | 석유회수증진을 위한 pH 민감성 폴리머의 인공신경망 점도 추정 모델 개발 | - |
dc.title.alternative | Development of Artificial Neural Network Viscosity Model of pH-Sensitive Polymer for Enhanced Oil Recovery | - |
dc.type | Thesis | - |
dc.date.awarded | 2011-02 | - |
dc.contributor.alternativeName | Kang | - |
dc.contributor.alternativeName | Pan Sang | - |
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.