선박용 압축공기 탱크의 피로파괴 안전성에 관한 연구
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 안재형 | - |
dc.date.accessioned | 2017-02-22T06:21:03Z | - |
dc.date.available | 2017-02-22T06:21:03Z | - |
dc.date.issued | 2005 | - |
dc.date.submitted | 56823-03-29 | - |
dc.identifier.uri | http://kmou.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002175212 | ko_KR |
dc.identifier.uri | http://repository.kmou.ac.kr/handle/2014.oak/9384 | - |
dc.description.abstract | In present day, the compressed air tank for ships is made of a cylindrical pressure vessel with welding structure and a stress amplitude caused by a dynamic load and mean stress by a dead load is occurred. By means of variable stress condition caused the concentration of stress on a welding area. In order to minimize the fatigue failure by concentrated stress, the limit and size of allowable damage factor and the shape of welding type must be determined at the designs. At this research, the property of safety for the compressed air tank evaluated in accordance with test and the established method related to the same kind of pressure vessel and the main result are followed as : 1. The compressed air tank for T.S. HANNARA of Korea Maritime University is selected for the testing model and calculated the operating hours of the air compressor for charging the tank. By means of the statistical analysis, it can estimate the cycle of dynamic load on the tank during the estimated design life. 2. The chemical and physical characteristics of the material for the pressure vessel are researched and collected data and other results. By those results, it is proposed that the formula of the fracture strength with 90% probability of fatigue failure with the stress concentration factor and stress ratio influenced on the fatigue strength. 3. At this research, the cumulative damage factor based on Miner-Palmgren hypothesis is used for the practical procedure of fatigue life prediction. Also, the quantitative analysis of the safety of fatigue fracture for the compressed air tank can be estimated and then the results are reflected on the optimization of design. 4. To review the theoretical calculation, the simulation test is conducted for stress concentration and stress ratio generated on the testing model by uses of finite element analysis program. | - |
dc.description.tableofcontents | Abstract 3 Nomenclature 5 1. 서 론 6 1.1 연구의 배경 6 1.2 연구의 목적 및 내용 9 2. 이론해석 10 2.1 압력용기의 정의 및 구조 10 2.2 피로파괴(Fatigue fracture) 12 2.2.1 피로설계의 기본개념 12 2.2.2 피로하중의 형태 15 2.2.3 피로수명과 내구한도의 정의 17 2.3 피로해석 방법 19 2.3.1 선형누적손상계수의 정의 19 2.4 피로균열발생수명에 영향을 미치는 요소 20 2.4.1 평균응력의 영향 20 2.4.2 응력 집중계수(Kt)의 영향 22 2.4.3 실린더의 응력해석 24 3. 압축공기 탱크의 피로파괴 안전성 평가 43 3.1 평가모델 43 3.2 재료의 화학적, 기계적 성질 45 3.3 변동응력의 사이클 수 평가 46 3.4 변동응력의 해석 49 3.4.1 이론해에 의한 변동응력 49 3.4.2 용접부의 응력집중계수 50 3.5 압력용기용 강판의 피로강도 52 3.5.1 P-S-N곡선 52 3.5.2 응력집중의 영향을 고려한 P-S-N 곡선의 수정 55 3.5.3 응력비(평균응력)의 영향을 고려한 P-S-N 곡선의 수정 57 3.6 선형누적손상계수의 평가 59 4. 결론 62 참고문헌 63 | - |
dc.language | kor | - |
dc.publisher | 한국해양대학교 대학원 | - |
dc.title | 선박용 압축공기 탱크의 피로파괴 안전성에 관한 연구 | - |
dc.title.alternative | A Study on the Safety of Fatigue Fracture of Compressed Air Tank for Ships | - |
dc.type | Thesis | - |
dc.date.awarded | 2005-02 | - |
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.