선박의 축계정렬 해석 시 선미부 강성이 선미관 후부 베어링 반력 지지점에 미치는 영향
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 이창훈 | - |
dc.date.accessioned | 2017-02-22T06:21:43Z | - |
dc.date.available | 2017-02-22T06:21:43Z | - |
dc.date.issued | 2016 | - |
dc.date.submitted | 57097-01-20 | - |
dc.identifier.uri | http://kmou.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002233549 | ko_KR |
dc.identifier.uri | http://repository.kmou.ac.kr/handle/2014.oak/9402 | - |
dc.description.abstract | Prior to shaft alignment, all the shaft were set in a line to keep flange coupling from misalignment and paralled to each other. However, several noticeable problems such as abnormal wear of bearing, no load on intermediate shaft bearing, excessive heat in the bearing, abnormal on reduction gear, and damage in the bearing has occurred. To solve these problems theories on optimal positioning of shaft bearings were developed and applied to general ships. From 1960s to 1970s companies like large shipyards and classification society started to show promising improvements on solving many of the problems. Recently, there are increasing reports on the after stern tube bearings for the engine of heavy 2-stroke ships being damaged due to incorrect wrong shaft alignment. Most shaft damages are caused due to insufficient analysis,design change of the ship in the design process, lake of shaft alignment experiences, and undefined analytical standards. To prevent furthermore damages, the classification societies have issued separate regulations for shaft alignment. Currently shaft alignment is done by simple technical study or hypothesis to find the position of the reaction point. However, reaction point is dependent on many factors such as external force, elasticity of the shaft, lubrication, and pressure distribution. Due to these factors, predicting the reaction point becomes very complicated. In addition when calculating the reaction force on after stern tube bearing, the classification society's recommendation is to use 1/3 and 1/2 position of bearing diameter from end of bearing for static condition. However, this recommendation was established a long time ago, and due to current implementation of EEDI (Energy Efficient Design Index), ships are required to use heavier propellers. Thus, investigation for new calculation method is on demand. The objective of this paper is to check and calculate a suitable reaction point in the after stern tube bearing considering the stiffness of bearing supporter, oil film and bearing. | - |
dc.description.tableofcontents | 제1장 서 론 1 1.1 연구의 배경 1 1.2 연구의 목적 2 1.3 논문의 내용 및 구성 3 제2장 축계정렬의 이론적 해석 4 2.1 기본식의 유도 4 2.1.1 횡하중과 모멘트하중을 받는 부등 단면보의 절점방정식 4 2.1.2 횡하중과 모멘트하중을 받는 부등 강성매트릭스 6 2.1.3 횡하중과 모멘트하중을 받는 보의 고정단 단면력 8 2.2 절점방정식의 해법 9 2.2.1 절점방정식의 해법 9 2.2.2 지점의 처리 9 2.3 반력영향계수의 계산 11 제3장 선미관 후부 베어링의 반력 지지점 15 3.1 기본이론 15 3.2 선체 베어링 지지점 해석 17 3.2.1 5만 6천톤급 벌크선 축계의 베어링 반력 해석 18 3.2.2 950 TEU 컨테이너선 축계의 베어링 반력 해석 23 3.2.3 30만톤급 유조선 축계의 베어링 반력 해석 28 3.2.4 4만 6천톤급 화학운반선 축계의 베어링 반력 해석 32 3.2.5 32만톤급 유조선 축계의 베어링 반력 해석 37 제4장 베어링 강성 변화에 따른 지지점 변화 43 4.1 강성이론 43 4.1.1 오일 필름 강성 43 4.1.2 베어링 강성 45 4.1.3 베어링 지지부 강성 46 4.2 강성 값 변화에 따른 지지점 변화 48 4.2.1 5만 6천톤급 벌크선 강성 변화 48 4.2.2 950TEU 컨테이너선 강성 변화 50 4.2.3 30만톤급 유조선 강성 변화 52 4.2.4 4만 6천톤급 화학운반선 강성 변화 54 4.2.5 32만톤급 유조선 강성 변화 56 제5장 결 론 59 참 고 문 헌 61 | - |
dc.language | kor | - |
dc.publisher | 한국해양대학교 대학원 | - |
dc.title | 선박의 축계정렬 해석 시 선미부 강성이 선미관 후부 베어링 반력 지지점에 미치는 영향 | - |
dc.title.alternative | The Effect of Stern Tube Stiffness on the Reaction Point of After Stern Tube Bearing for Shaft Alignment Analysis of Vessel | - |
dc.type | Thesis | - |
dc.date.awarded | 2016-02 | - |
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.