한국해양대학교

Detailed Information

Metadata Downloads

수치해석을 이용한 OWC형 파력발전시스템의 통합성능해석

DC Field Value Language
dc.contributor.author JinJiYuan -
dc.date.accessioned 2017-02-22T06:26:50Z -
dc.date.available 2017-02-22T06:26:50Z -
dc.date.issued 2013 -
dc.date.submitted 57014-05-25 -
dc.identifier.uri http://kmou.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002175360 ko_KR
dc.identifier.uri http://repository.kmou.ac.kr/handle/2014.oak/9554 -
dc.description.abstract Plenty of wave energy absorption devices have been invented, and several of them have been utilized in the electricity generation. The Oscillating Water Column (OWC) type has been widely employed in the application for the wave energy conversion for last 30 years. Due to the advantages of rather reliable converting technique and comparable production cost over other types of ocean energy, wave energy conversion system is considered to be feasible for the establishment of commercial power production. The present paper deals with the numerical study on integrated OWC system for wave energy conversion. All the numerical study was based on Reynolds averaged Navier-Stokes(RANS) equations. An OWC wave energy converting system includes three energy converting stages: 1) The OWC inside a chamber forces air alternately into and out of the atmosphere through the duct. 2) A turbine with symmetric blades transforms the bi-directional air flow energy into a mechanical torque. 3) An electric generator linked to the turbine transforms the torque into electrical power. Since the hydro- and aero-dynamic performance analyses are of primary concern for the thesis, the third stage for electric generator is not considered in this study. For the study of first energy converting stage, the numerical wave tank is established. The VOF model are adopted to calculate the wave generation and propagation in the numerical wave tank. The two-dimensional & three dimensional numerical wave tanks are validated with the analytic results and the predicted performance of oscillating water column is compared with the available experimental data. Various parameters of chamber geometry are investigated to demonstrate the effects of shape parameters on the wave field, water column oscillation in the chamber and wave energy conversion. For the study of second energy converting stage, the numerical model for rotating machine is developed based on MRF technique. To optimize the impulse turbine, the effects of several shape parameters on operating performance are investigated such as number of blade, angle of guide vane, tip clearance, hub ratio, G/lr, sweep angle & staggered blade. Through the parametric study, the optimized impulse turbine is drawn out in diameter D=1.8m for 250kW capability. The fully transient calculation model is developed to investigate the unsteady characteristics of impulse turbine, especially self-starting performance under various incident air flow conditions. For the study of integrated system of chamber and turbine, the orifice module is adopted. The experiments on relationship between the air flow velocity and the pressure difference between two side of the turbine and orifice are carried out. The corresponding simulation is performed to validate the capability of the numerical model on the prediction of pressure drop. The numerical wave tank is embedded with the orifice module to investigate the integrated OWC system and interaction of turbine effects. The effects of wave directions on the performance of an OWC chamber have been investigated. Two test conditions which are with and without turbine effects was carried out in experimental study. The experiment was carried out in a 3-D wave basin. The wave elevation inside the chamber was measured at center point under various incident wave conditions and wave directions from 0o to 90o. A CFD study using a numerical wave tank was also conducted to compare the results with the experimental data and to reveal the detailed flows around the chamber. In order to evaluate the operating performance of OWC facilities in real sea conditions, this paper proposed the integrated numerical techniques for OWC - turbine system to induce the influences of the other processing. The real sea conditions are considered as the combination of regular waves to estimate hydropower from incident waves. The estimating method for individual regular waves is based on the numerical simulation of the OWC chamber with effects of turbine effects. The evaluation of the integrated OWC system by using look-up table to estimate the averaged power output of Jeju OWC plant is also presented. The look-up table contains three kinds of database: the orifice, OWC - orifice and turbine performance databases. The orifice database shows the relationship between the air flow rate and pressure drop for different orifice diameters. The OWC - orifice database shows the relationship between the incident wave condition and air flow rate generated inside the OWC chamber with various orifice devices. The turbine performance database presents the steady-state performance of the designed impulse turbine under various air flow rates and rotational speeds. The real-time power output of the OWC system can be predicted with the look-up table by iterations of each stage. Finally the process of predicting the operating performance in the real sea conditions using look-up table is presented. The software with Graphic User’s Interface (GUI) contains all look-up table is developed using Visual C++ language, which can complete the iteration process automatically. -
dc.description.tableofcontents List of Tables vii List of Figures viii Abstract xvi 1. 서 론 1.1 연구 배경 1 1.2 파력발전의 개발 현황 4 1.2.1 파력발전의 분류 4 1.2.2 국내외 파력발전 기술개발 현황 5 1.3 OWC형 파력발전장치의 OWC 챔버 연구개발 현황 10 1.4 터빈의 연구개발 현황 12 1.4.1 웰스터빈 12 1.4.2 임펄스터빈 15 1.5 수치조파수조의 연구현황 19 1.5.1 기본방정식 19 1.5.2 수치조파 21 1.5.3 개구경계조건 22 1.54 자유수면의 추적 23 1.6 본 논문의 주요연구 내용 및 목표 25 2. 수치해석방법 2.1 개요 27 2.2 기본방정식 28 2.2.1. 연속방정식 28 2.2.2 RANS 방정식 28 2.3 난류모델링 (Turbulent modelling) 30 2.4 VOF 모델 33 2.5 수치방법 36 2.5.1 유한체적법 36 2.5.2 이산화 스킴 37 가. 공간이산 37 나. 시간이산 39 다. 속도-압력 보간 39 2.6 경계조건 42 3. 수치해석을 이용한 OWC 챔버 성능해석 3.1 수치조파수조구축 43 3.1.1 two-phase VOF 모델 검증 43 3.1.2 수치조파수조 44 가. 지배방정식 44 나. 수치방법 45 다. 수치조파수조의 검증 46 3.2 수치조파수조를 이용한 챔버 내 파고 분석 49 3.3 수치조파수조를 이용한 덕트 내 유속 예측 53 3.4 노즐-공기실 면적비의 영향 60 3.5 파랑집중장치의 영향 62 3.5.1 싱글 덕트 시스템 62 3.5.2 듀얼 덕트 시스템 69 3.6 결론 74 4. 수치해석을 이용한 임펄스 터빈 성능해석 4.1 수치해석을 이용한 임펄스터빈 최적화 75 4.1.1 MRF를 이용한 터빈 해석기법 구축 75 4.1.2 임펄스터빈의 최적설계 80 가. 날개수의 영향 80 나. 허브비의 영향 81 다. Tip Clearance의 영향 81 라. 가이드베인 각도의 영향 82 마. G/Lr의 영향 83 바. 날개 Sweep Angle의 영향 85 사. Staggered Blade의 영향 86 4.2 250kW급 터빈설계를 위한 직경 및 유량 산출 91 4.3 500kW급 임펄스터빈 상세설계 93 4.3.1 표준터빈 최종 상세설계 93 4.3.2 Ring-type 터빈 최종 상세설계 95 4.4 500kW급 임펄스터빈 성능평가 96 4.4.1 정상상태의 성능평가 96 4.4.2 자기기동 성능평가 97 4.5 비정상 터빈성능해석 100 4.5.1 개요 100 4.5.2 경계조건 100 4.5.3 결과 검증 101 4.5.4 특정조건에서 터빈의 비정상 계산결과 103 4.6 결론 106 5. 터빈의 영향을 모사하기 위한 기법연구 5.1 실험을 통한 연구 107 5.2 수치해석을 이용한 연구 114 5.2.1 Porous Media 모델 115 5.2.2 오리피스 모델 118 5.3 결론 120 6. 터빈의 영향을 고려한 OWC 통합성능해석 6.1 실험을 통한 공기실 형상에 따른 자유수면 고찰 121 6.2 통합 수치해석 결과의 검증 127 6.3 수치해석을 이용한 통합성능해석 131 6.4 구조물에 작용하는 유체력 계산 137 6.5 결론 138 7. 사파중 OWC형 파력발전 장치의 성능연구 7.1 열린 OWC 챔버에 대한 사파중 성능평가 139 7.1.1 실험을 통한 고찰 139 7.1.2 수치해석을 통한 연구 142 7.2 터빈의 영향을 고려한 OWC 챔버에 대한 사파중 성능연구 146 7.2.1 실험적인 연구 146 7.2.2 수치해석을 통한 연구 148 7.3 500kW급 용수 파력발전시스템의 사파중 성능평가 150 7.4 결론 151 8. 500kW급 용수 시험파력발전시스템의 실해역 성능예측을 위한 Look-up Table 구축 8.1 개요 152 8.2 실해역 불규칙파에 대한 보정 154 8.3 실해역 파랑중 성능예측을 위한 Look-up Table 구축 156 8.3.1 오리피스 압력강하 Look-up Table 구축 157 8.3.2 규칙파중에서 OWC 챔버의 성능 Look-up Table 구축 158 8.3.3 임펄스 터빈의 성능 Look-up Table 구축 166 8.4 Look-up Table을 이용한 성능평가 과정 167 8.4.1 OWC 시스템의 성능예측 Process 167 8.4.2 예를 통한 성능예측 process 소개 169 8.5 결론 172 9. 500kW급 용수 시험파력발전시스템 성능예측 S/W구축 9.1 개요 173 9.2 Look-up Table을 이용한 성능예측 패키지 175 9.3 CFD 코드를 이용한 터빈성능해석 패키지 175 9.4 실행 사례를 통한 Look-up Table 패키지 설명 179 9.4.1 메뉴 설명 179 가. Automatic 모듈 179 나. Manual 모듈 179 9.4.2 실행 예 180 가. Automatic 모듈 180 나. Manual 모듈 181 9.5 결론 184 10. 결론 및 제안 10.1 결론 185 10.1 제안 및 향후연구내용 189 감사의 글 190 참고문헌 191 -
dc.language kor -
dc.publisher 한국해양대학교 대학원 -
dc.title 수치해석을 이용한 OWC형 파력발전시스템의 통합성능해석 -
dc.title.alternative Numerical Study on Integrated Performance of OWC-Impulse Turbine Wave Energy Converter -
dc.type Thesis -
dc.date.awarded 2013-02 -
dc.contributor.alternativeName Jin Ji Yuan -
Appears in Collections:
해양시스템공학과 > Thesis
Files in This Item:
000002175360.pdf Download

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse