한국해양대학교

Detailed Information

Metadata Downloads

신경망을 이용한 유비쿼터스 컴퓨팅 환경의 통합관제를 위한 시스템 미들웨어 구현

DC Field Value Language
dc.contributor.author 이주상 -
dc.date.accessioned 2017-02-22T06:28:18Z -
dc.date.available 2017-02-22T06:28:18Z -
dc.date.issued 2008 -
dc.date.submitted 56877-07-05 -
dc.identifier.uri http://kmou.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002175398 ko_KR
dc.identifier.uri http://repository.kmou.ac.kr/handle/2014.oak/9598 -
dc.description.abstract Middleware of ubiquitous computing environment is defined as the support of an application in heterogeneous environment, ubiquitous environment. Middleware-the software layer that lies between the operating system and the application-can be defined as software that helps to give users service regardless of lower hardware, operating system, network. In other words, it means software that supports communication between different protocols, system operating systems, databases and applications, and plays a role in allowing applications to operate in any information system environments. The purpose of this research is to design and implement the system middleware for real-time integration control in ubiquitous computing environment. To accomplish this purpose, firstly requirements for integration control in ubiquitous computing environment was analyzed, and then 3 layer structure and functions of middleware core that compose middleware were derived based on the requirements analysis. The 3 layer structure consists of Application Connector Layer which takes charge of communication connection between heterogeneous information gathering terminal equipment and middleware, External Layer which both guarantees external interface through connector and takes charge of link to internal layer through listener, and Internal Layer which both plays an important role for interface between external and middleware core and takes charge of actual business logic implementation laying on middleware core. Middleware core manages life cycle of all middleware agents from creation to extinction such as resources management, event management, message management, process management and agent management, etc. It also not only maintains but also manages the whole functions including communications among all modules of systems and resources allocation. Secondly, after each module of middleware was derived, the whole system structure was designed so that shows how middleware operates with derived modules. At this time, neural network model to sort priority of events by situation was designed. Moreover, the functions of each middleware module was defined concretely. Especially the classification methodology of neural network to handle priority of events in real time in the process of situation recognition of middleware for integrated control is proposed. This methodology enabled to shorten time spent on events priority classification and classify events priority more efficiently without composing rule-database. This research also implemented the actual middleware system based on the design and offered simple API to enable developer to implement easily even if internal action of system is unknown during developing application program in the environment where this middleware is applied. Finally, integrated control platform in ubiquitous computing environment was constructed to test performance of the implemented middleware, and actual performance test was executed by composing virtual performance workload examination module and using system workload test tool. The result showed that response time and server resources processing ability are excellent. -
dc.description.tableofcontents 1. 서 론 1 2. 신경회로망 4 2.1 신경회로망 4 2.1.1 신경회로망 배경 5 2.1.2 생물학적 뉴런과 인공적 뉴런 사이의 고찰 6 2.2 다층 신경회로망의 학습과 구조 9 2.3 오류 역전파 알고리즘의 학습 요소들 14 2.3.1 초기 가중치 15 2.3.2 누적 가중치 조정과 증분 갱신 15 2.3.3 활성함수의 기울기 16 2.3.4 학습률 17 2.3.5 모멘텀 방법 17 3. 유비쿼터스 미들웨어 19 3.1 유비쿼터스 미들웨어 개요 19 3.2 유비쿼터스 미들웨어 분류 21 3.3 유비쿼터스 미들웨어 기술 특성 24 3.4 유비쿼터스 미들웨어 유형 26 4. 유비쿼터스 컴퓨팅 환경의 통합관미들웨어 설계 28 4.1 요구사항 분석 28 4.2 미들웨어 구조 설계 29 4.2.1 미들웨어의 전체 구조 30 4.2.2 Connector 33 4.2.3 External Agent 33 4.2.4 Internal Agent 34 4.2.5 Listener 35 4.2.6 Core 36 4.2.7 Fault Tolerance 39 4.3 이벤트 경합처리를 위한 신경회로망 모델링 40 4.3.1 이벤트 우선순위 기준 설정 40 4.3.2 룰-데이터베이스 기반 우선순위 알고리즘 47 4.3.3 룰-데이터베이스 기반 우선순위 알고리즘의 문제점 48 4.3.4 신경망을 이용한 이벤트 우선순위 분류 알고리즘 49 4.4 미들웨어 처리 흐름도 설계 53 4.4.1 미들웨어의 전체 처리흐름도 53 4.4.2 미들웨어 START(초기화) 상세흐름도 55 4.4.3 미들웨어 LOOP 상세흐름도 56 4.4.4 미들웨어 ETC 이벤트 처리 상세흐름도 57 4.5 미들웨어 프로세스간 이벤트 송수신 설계 57 4.5.1 이벤트 처리흐름도 58 4.5.2 이벤트 사용 방법 59 4.6 미들웨어 공유메모리 관리 설계 59 5. 미들웨어의 구현 및 실험 62 5.1 신경회로망 구현 및 실험결과 62 5.1.1 실험 환경 62 5.1.2 신경망 학습 및 실험 결과 64 5.1.3 이벤트 우선순위 분류 알고리즘 평가 69 5.2 미들웨어 구현 방법 및 결과 71 5.2.1 미들웨어의 기본 구조 구현 71 5.2.2 Agent 구현 74 5.2.3 Agent 구성하기 79 5.2.4 Event 구성하기 87 5.2.5 Resource 구성하기 94 5.2.6 Connector 구성하기 100 5.2.7 미들웨어 구성내역 107 5.3 미들웨어 적용 및 실행결과 108 5.3.1 통합관제플랫폼 구축 108 5.3.2 통합관제플랫폼 성능테스트 120 6. 결 론 126 참고문헌 128 부 록 132 -
dc.language kor -
dc.publisher 한국해양대학교 -
dc.title 신경망을 이용한 유비쿼터스 컴퓨팅 환경의 통합관제를 위한 시스템 미들웨어 구현 -
dc.title.alternative The System Middleware Implementation for Integration Control of Ubiquitous Computing Environment using Neural Network -
dc.type Thesis -
dc.date.awarded 2008-02 -
dc.contributor.alternativeName LEE JOO SANG -
Appears in Collections:
전자통신공학과 > Thesis
Files in This Item:
000002175398.pdf Download

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse