열분해층을 이용한 자립형 GaN 기판의 HVPE 성장에 관한 연구
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 김시내 | - |
dc.date.accessioned | 2017-02-22T06:43:40Z | - |
dc.date.available | 2017-02-22T06:43:40Z | - |
dc.date.issued | 2014 | - |
dc.date.submitted | 57042-05-01 | - |
dc.identifier.uri | http://kmou.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002175496 | ko_KR |
dc.identifier.uri | http://repository.kmou.ac.kr/handle/2014.oak/9727 | - |
dc.description.abstract | Freestanding GaN (FS-GaN) substrate is inevitable for the high power and high speed optoelectronic devices. However, it is still difficult to obtain high quality large-area GaN substrate with low-cost. In this thesis, it is proposed to introduce a decomposable buffer layer (DBL) to fabricate the FS-GaN. Hydride vapor phase epitaxy (HVPE) is used to fabricate FS-GaN, and the growth condition for DBL and cap layer (CPL) were optimized to grow high quality thick GaN. The crystal quality of HT-GaN has been investigated in terms of optical, electrical and structural quality. This thesis consists of five chapters. In chapter 1, the fundamental GaN properties, problems in the fabrication of FS-GaN substrate, and many application of the GaN are introduced. At the end of the chapter, the purpose of this study is addressed. Chapter 2 describes the experimental and characteristic methods. HVPE was used as the growth method, field emission scanning electron microscopy (FE-SEM), high resolution x-ray diffraction (HR-XRD), micro Raman, cathodoluminescence (CL), photoluminescence (PL), Hall effect measurement were used as the characterization methods. In chapter 3, DBL growth was optimized in terms of the thermal decomposition of GaN. Also, the chemical reaction mechanism and roles of DBL were described. Chapter 4 describes on the design of growth and separation processes by using DBL. Also, the role of CPL was described. Moreover, investigate the feasibility of our proposal to fabricate the high quality FS-GaN substrate through the characterization of structural, optical and electrical properties of self-separated GaN. Finally, the results found in this thesis are summarized and concluded in the chapter 5. | - |
dc.description.tableofcontents | List of Figures i List of Tables iii Abstract iv 1. 서론 1.1 개요 1 1.2 GaN의 특성 1.2.1 물리적 특성 1 1.2.2 응용 분야 3 1.2.3 GaN 성장에서의 문제점 6 1.3 자립형 GaN 기판의 배경 1.3.1 자립형 GaN 기판의 필요성 10 1.3.2 GaN의 자발적 분리를 위한 종래 연구 12 1.4 본 연구의 목적 14 참고문헌 16 2. 실험 2.1 성장 방법 2.1.1 Hydride Vapor Phase Epitaxy | - |
dc.description.tableofcontents | PL 26 2.2.6 Hall measurement 28 참고문헌 30 3. 새로운 완충층 설계 3.1 개요 31 3.2 새로운 완충층 설계의 전제조건 31 3.2.1 one-step process 31 3.2.2 Reduction of crack 32 3.3 Decomposable buffer layer (DBL)의 도입 34 3.3.1 GaN의 열분해 특성 34 3.3.2 자립형 GaN 제작을 위한 DBL의 역할 규명 38 3.3.3 온도에 의존하는 DBL의 성장조건 최적화 40 3.3.4 DBL의 화학적 반응 원리 45 참고문헌 48 4. 고품질 자립형 GaN 구조의 최적화 4.1 개요 49 4.1.1 DBL을 적용한 자립형 GaN의 제작 순서 49 4.2 GaN의 안정적 분리를 위한 최적화 조건 4.2.1 성장 온도(열처리)에 의존하는 분리 비율 53 4.2.2 보호층 (Cap Layer)의 역할 57 4.3 자립형 GaN 기판의 특성 평가 4.3.1 결정학적 특성 58 4.3.2 광학적 특성 66 4.3.3 전기적 특성 69 참고문헌 70 5. 요약 및 결론 72 감사의 글 74 연구실적 75 | - |
dc.description.tableofcontents | CL 25 2.2.5 Photoluminescence | - |
dc.description.tableofcontents | HR-XRD 22 2.2.3 Micro Raman spectroscopy 24 2.2.4 Cathodoluminescence | - |
dc.description.tableofcontents | FS-SEM 20 2.2.2 High Resolution X-ray diffraction | - |
dc.description.tableofcontents | HVPE 18 2.2 측정 방법 2.2.1 Field Emission Scanning Electron Microscope | - |
dc.language | kor | - |
dc.publisher | 한국해양대학교 | - |
dc.title | 열분해층을 이용한 자립형 GaN 기판의 HVPE 성장에 관한 연구 | - |
dc.type | Thesis | - |
dc.date.awarded | 2014-02 | - |
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.