한국해양대학교

Detailed Information

Metadata Downloads

유체-구조 연성 해석기법을 이용한 선박의 충돌 및 좌초 구조 안전성 평가

DC Field Value Language
dc.contributor.author 조투 -
dc.date.accessioned 2017-02-22T06:50:51Z -
dc.date.available 2017-02-22T06:50:51Z -
dc.date.issued 2014 -
dc.date.submitted 57042-05-01 -
dc.identifier.uri http://kmou.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002175647 ko_KR
dc.identifier.uri http://repository.kmou.ac.kr/handle/2014.oak/9904 -
dc.description.abstract Structural safety assessment was performed for the collision and grounding scenarios of specialized ship and its cargo. To ensure reasonable and reliable safety assessment, realistic full-scale ship collision and grounding simulations were carried out, using FSI analysis technique of LS-DYNA code and propulsion force instead of velocity in simulations. There was no fracture damage in the side inner side hull of DWT 2,600 ton specialized ship as struck ship, except DWT 35,000 ton striking ship in ballast condition to struck one in service at 90 and 80 degree attack angles, and also no damage in the inner bottom hull of specialized ship as grounding one, even rock height 0.75m above inner bottom hull under full load condition. Contrary to the void condition simulations, more realistic collision and grounding response behaviors could be found in the surrounding sea water, in that striking ship moved laterally before collision, and a lot of kinetic energy of large size of striking ship might be transferred to the fluid energy, which would give a reasonable collision speed response after collision in addition to the loss of internal energy to the struck ship. Realistic grounding response behaviors of the grounding ship was also observed, such as jumping and sway around the rock under its self weight, depending on its load condition, rock height and position. Through the full-scale collision simulation of cargo container boxes and drums loaded inside the cargo hold of struck ship using FSI analysis technique, it was found that their crashworthiness capacities and damage patterns could be relatively well figured out with their energy dissipations, and their structural safeties would be assessed with high reliability. Container boxes and drums in shell guide also contributed greatly to the crashworthiness of side structure of struck ship, and no damage occurred in the drums, except damage only in the bottom and side of square concrete drum with no damage in its inside even in the very serious collision scenario. It could be confirmed that this specialized ship might be superior to the severe collision scenarios due to the wide double side hull space. In the future study, some verification works on the collision and grounding simulations should be performed for the enhancement of their reliability, using FSI analysis technique. -
dc.description.tableofcontents 목 차 목 차 ⅰ List of Tables ⅲ List of Figures iv Abstract vi 1. 서 론 1 2. 충돌 및 좌초 시나리오와 모델링 4 2.1 재료의 파단기준 5 2.2 충돌 및 좌초 모델 8 2.3 충돌 및 좌초 시나리오 16 3. 실선 충돌 시뮬레이션을 통한 구조 안전성 평가 19 3.1 500톤 연안대형어선 충돌선의 충돌 시뮬레이션 결과 19 3.2 1,000톤 원양어선 충돌선의 충돌 시뮬레이션 결과 21 3.3 3,700톤 일반화물선 충돌선의 충돌 시뮬레이션 결과 23 3.4 10,500톤 석유제품운반선 충돌선의 충돌 시뮬레이션 결과 25 3.5 35,000톤 유조선 충돌선의 충돌 시뮬레이션 결과 28 3.6 충돌 시나리오에 따른 선측구조 안전성 평가 고찰 38 4. 운반용기 및 운반물의 내충돌 안전성 평가 39 4.1 운반용기 및 운반물의 내충돌 응답해석 결과 39 4.2 운반용기 및 운반물의 내충돌 안전성 평가 고찰 46 5. 실선 좌초 시뮬레이션을 통한 구조 안전성 평가 48 5.1 실선 좌초 시뮬레이션 결과 48 5.2 좌초선박 선저부의 좌초에 따른 안전성 평가 53 5.3 선저부의 좌초에 따른 안전성 평가 고찰 54 6. 결 론 54 참고문헌 57 -
dc.language kor -
dc.publisher 한국해양대학교 해양시스템공학과 선체구조실험실 -
dc.title 유체-구조 연성 해석기법을 이용한 선박의 충돌 및 좌초 구조 안전성 평가 -
dc.title.alternative Structural Safety Assessment of Ship Collision and Grounding using FSI Analysis Technique -
dc.type Thesis -
dc.date.awarded 2014-02 -
dc.contributor.alternativeName ZHAO TUO -
Appears in Collections:
조선해양시스템공학과 > Thesis
Files in This Item:
000002175647.pdf Download

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse