人工知能 技法을 利用한 ARM프로세서 基盤의 指紋認識 信號處理보드 設計에 관한 硏究
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 金東漢 | - |
dc.date.accessioned | 2017-02-22T06:53:02Z | - |
dc.date.available | 2017-02-22T06:53:02Z | - |
dc.date.issued | 2003 | - |
dc.date.submitted | 56797-10-27 | - |
dc.identifier.uri | http://kmou.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002173985 | ko_KR |
dc.identifier.uri | http://repository.kmou.ac.kr/handle/2014.oak/9960 | - |
dc.description.abstract | Fingerprint is a unique feature to an individual. It stays with a person throughout his or her life. This makes the fingerprint the most reliable kind of personal identification because it can't be forgotten, misplaced, or stolen. Now, social requirements of personal identification techniques are expanding in a number of new application area. Especially fingerprint recognition technologies among biometrics technologies has more spot lighting beacuse fingerprint authorization is the most profitable and convenient method of Biometric Authentics System(BAS). Generally, BAS is classfied into PC(personal computer) BAS and Standard-alone BAS. PC-BAS is only designed for using into computer and Standard-alone BAS(S-BAS) represents independent system of using microprocessor. In this paper, neural network was used(one for core and another for delta)in feature extraction and the processor of designed Fin-gerprint identification Signal processing Board(FSB) used SA(St-rongARM), it was used into network, set-top box, PDA(Perso-nal Digital Assistant), PCS(Personal Communications Services), etc. and in the most BAS, fingerprint sensor uses optics sensor but in this paper, fingerprint sensor used cmos E-Field type. After test, designed S-BAS proved that it is possible to imp-lement independently whitout PC. | - |
dc.description.tableofcontents | 목차 Abstract = i 제1장 서론 = 1 제2장 신경회로망 = 3 2.1 신경회로망 이론 = 3 2.2 역전파에 의한 학습 = 6 제3장 지문인식 알고리즘 = 12 3.1 전처리(Preprocessing) = 12 3.2 특징 추출 = 15 3.3 지문영상의 매칭(Matching) = 18 제4장 지문인식 신호처리 보드 설계 및 실험 = 20 4.1 CPU 부분 = 20 4.2 센서 부분 = 28 4.3 지문인식모듈 구성도 = 38 4.4 FAR과 FRR = 38 4.5 실험 결과 = 39 제5장 결론 = 49 참고문헌 = 50 부록(APPENDIX) A. 메인 회로도 = 52 B. 센서 회로도 = 53 C. 지문인식 신호처리보드의 실제 크기 = 54 D. 지문인식 신호처리보드의 Gerber = 55 | - |
dc.publisher | 韓國海洋大學校 | - |
dc.title | 人工知能 技法을 利用한 ARM프로세서 基盤의 指紋認識 信號處理보드 設計에 관한 硏究 | - |
dc.title.alternative | A Study on Design of ARM Processor based Fingerprint Recognition Signal Processing Board using Artificial Intelligence | - |
dc.type | Thesis | - |
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.