The goal of this study was to select the most appropriate microbial consortium for efficient bioremediation of azo dye wastewater. A consortium composed of two bacterial cultures (Mesorhizobium sp. and Sphingomonas melonis) and two yeast cultures (Apiotrichum mycotoxinivarans and Meyerozyma guilliermondi) achieved more than 80% decolorization within 24 h (50 and 100 mg/L dye). The chemical oxygen demand (COD) removal rate for the bacterial consortium (B-C) reached 97% in 72 h while the yeast consortium (Y-C) and the total microbial consortium (T-C; bacterial and yeast consortia combined) achieved 98.0% and 97.5%, respectively, in 24 h, indicating potential mineralization of the azo dye Acid Blue 113. Moreover, there was a positive relationship between cell growth and the azo dye degradation rate in all consortia. The Fourier transform infrared (FT-IR) spectra profiles for yeast-containing consortia showed a rapid disappearance of absorbance at the azo bond specific wavenumber (1455 cm-1) (24 h), while the B-C showed disappearance within 72 h. Metabolic products containing -NH2 groups were also detected based on the absorbance at the 1300 cm-1 wavenumber, reflecting an occurrence of azo bond cleavage. It was concluded that the data for decolorization, COD removal, cell growth, and FT-IR spectra collectively provide evidence for azo dye decolorization and potential mineralization of the dye by the bacterial and yeast consortium. Moreover, transcriptomic analysis using RNA-sequencing further explained the potential mechanisms of azo dye biodegradation by Sphingomonas melonis. NAD(P)-dependent oxidoreductase and type 1 glutamine amidotransferase were differentially expressed in the dye treatment, indicating that degradations of the azo bond and the aromatic compounds could be catalyzed by these enzymes. The selected microbial consortia could be applied for the bioremediation of azo dye wastewater at the industrial scale of varying environmental conditions.|이 연구의 목적은 아조 염료 폐수의 효율적인 생물학적 분해를 위한 가장 적절한 미생물 컨소시엄을 선택하는 것이다. 2 종의 박테리아(Mesorhizobium sp. 및 Sphingomonas melonis)와 2 종의 효모(Apiotrichum mycotoxinivarans 및 Meyerozyma guilliermondi)로 구성된 컨소시엄은 24 시간만에 50 또는 100 mg/L의 azo 염료(Acid Bule 113)를 80 % 이상 탈색을 달성했습니다. 화학적 산소 요구량 (COD) 제거율은 24 시간 후 효모 컨소시엄 (Y-C)과 총 미생물 컨소시엄 (T-C, 박테리아 및 효모 컨소시엄 결합)이 각각 98.0 %와 97.5 %를 달성하는 반면, 박테리아 컨소시엄 (B-C)은 72 시간 후 97 % 달성하였다. 또한, 모든 컨소시엄에서 세포 성장과 azo 염료 분해율은 비례관계를 가지고 있다. Fourier transform infrared (FT-IR) 스펙트럼 분석 결과, Y-C는 아조 결합을 나타내는 특정 주파수 (1455 cm-1)에서 24 시간 후 흡광도의 급격한 감소를 보인 반면, BC는 72 시간 후 소멸을 보였다. 또한, 아조 결합의 절단을 의미하는 –NH2 그룹의 주파수 (1300 cm-1)에서도 azo 염료가 분해되는 시간에 따라서 검출되었다. 탈색 실험, COD 제거, 세포 성장 및 FT-IR 스펙트럼에 대한 결과를 종합해보면, 박테리아 및 효모 컨소시엄이 의한 아조 염료의 잠재적인 무기화 작용에 대한 증거를 제공한다고 평가되었다. 또한, RNA 시퀀싱을 통한 전사체 분석은 Sphingomonas melonis의 잠재적 아조 염료 분해 매커니즘을 밝혀내었다. 즉, NAD(P)-dependent oxidoreductase 및 type 1 glutamine amidotransferase는 염색물질의 처리구에 차별적으로 많이 발현된 것으로 보아, 이러한 효소가 염색물질의 아조결합구조 및 그 분해산물인 방향족화합물의 분해에 관여한 것으로 판단되었다. 선발 된 미생물 컨소시엄은 다양한 환경적 요인에 노출되어 있는 산업규모의 아조 염료 폐수 처리에 생물학적처리를 위해 적용될 수 있을 것으로 보인다.