건물 사이의 테라헤르츠 펄스 전파를 통한 대기의 날씨 및 감쇠율 측정
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 문엄배 | - |
dc.date.accessioned | 2017-02-22T05:21:50Z | - |
dc.date.available | 2017-02-22T05:21:50Z | - |
dc.date.issued | 2015 | - |
dc.date.submitted | 57069-08-26 | - |
dc.identifier.uri | http://kmou.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002174546 | ko_KR |
dc.identifier.uri | http://repository.kmou.ac.kr/handle/2014.oak/8594 | - |
dc.description.abstract | In this experiment, A broadband Terahertz (THz) pulse was measured through a 186m long path between buildings by using a long path THz Time-Domain-Spectroscopy system. The total THz path was 186m and 158m propagating of the path subject to atmosphere influence. According to the change in weather such as amount of clouds, rain and snow, we have transmitted a broadband THz pulse and received the signal and the frequency domain of the output pulse. When the water vapor density of the atmosphere changed from 1.1 g/m³ to 11.2g/m³, the determination of water vapor from 0.35 to 1 THz was reported. Comparing the experiments using a fast scan and a slow scan represented the shift of the time domain by the change in humidity. This effect on the weather conditions were observed by using a low frequency band, which was to be expected that the bandwidth can be used for the THz propagation application in the future. Another system which path is 25m and the demonstrated amplitude transmission of THz frequency domain through the indoor of laboratory with 45% relative humidity at 21 degrees Celsius have been made. As a result, It is possible to propagate into atmosphere regardless of water vapor if the THz is under 0.37THz was realized. This means that low frequency bandwidth (-0.37THz) was experienced with negligible attention and group velocity dispersion due to transmission. Such stable main pulse shape appears to be suitable for the THz bit in a digital THz communication. | - |
dc.description.tableofcontents | 1. 서 론 1 2. 본 론 3 2.1 실험 장치 구성 3 2.2 Receive Chip의 변경에 따른 THz 신호 변화 8 2.2.1 LT-GaAs[5-10-5μm]를 사용하여 얻은 THz 신호 8 2.2.2 LT-GaAs[10-100-10μm]를 사용하여 얻은 THz 신호 12 2.3 날씨 변화에 따른 THz 신호 특성 16 2.3.1 눈, 비, 흐린 날씨에 따른 THz 신호 16 2.3.2 수증기 밀도의 변화에 따른 THz 신호 19 2.3.3 수증기 밀도의 변화에 따른 THz 신호 지연 정도 23 2.3.4 수증기 밀도의 변화에 따른 THz 신호 흡수율 25 2.4 습도 변화에 따른 THz 신호 특성 27 2.4.1 Slow scan을 이용한 연속적 습도 변화에 따른 THz 신호 변화 27 2.4.2 Fast scan을 이용한 THz 신호 측정 및 Slow scan과의 비교 30 2.4.3 Fast scan을 이용한 시간 변화에 따른 THz 신호 변화 33 2.5 건물 내에서 측정한 THz 신호 36 2.6 저주파 대역을 이용한 THz Bit Pulse 41 3. 결론 45 참고문헌 47 | - |
dc.language | kor | - |
dc.publisher | 한국해양대학교 | - |
dc.title | 건물 사이의 테라헤르츠 펄스 전파를 통한 대기의 날씨 및 감쇠율 측정 | - |
dc.title.alternative | 건물 사이의 테라헤르츠 펄스 전파를 통한 대기의 날씨 및 감쇠율 측정 | - |
dc.type | Thesis | - |
dc.date.awarded | 2015-02 | - |
dc.contributor.alternativeName | EOM BAE MOON | - |
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.