수중폭발 충격하중으로부터 승조원을 보호하기 위한 충격 절연장치의 최적설계 연구
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 곽묘정 | - |
dc.date.accessioned | 2017-02-22T06:26:19Z | - |
dc.date.available | 2017-02-22T06:26:19Z | - |
dc.date.issued | 2005 | - |
dc.date.submitted | 56823-03-29 | - |
dc.identifier.uri | http://kmou.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002175347 | ko_KR |
dc.identifier.uri | http://repository.kmou.ac.kr/handle/2014.oak/9540 | - |
dc.description.abstract | An underwater shock loading produces two dangerous effects. The first effect is to destroy a battleship so that it can not continue normal function. The second is to injure onboard crews through dynamic structural responses. Underwater shock and its effects on battleship have been an active research field since World War Ⅱ and some results were introduced. But results of crews survivability against underwater shock loading have not achieved. Recently, there is a growing interest in effects of underwater shock onboard crews. Underwater shock isolators act to reduce harmful shock loading within tolerance limits of a human body. The problem of optimum design is defined as the selection of isolator parameter that causes the performance index of the system to be optimized. In this study the limiting performance optimum design problem of a shock isolator using a genetic algorithm with the elitist strategy was formulated for crew safety against an underwater explosion(UNDEX) shock loading. For simplification of the problem, the ship structure-shock isolator-human body coupled system was idealized as one degree-of-freedom system and the UNDEX shock loading was calculated based on the Talyor's air-backed flat plate theory. Additionally, The mechanical driving point impedance of human body model with shock isolator(ISO,5982-1982) is used to solve the optimum design problem. Through numerical examples, the limiting performance curve of the optimum shock isolator was calculated compared with that of the optimum linear shock isolator composed of a spring and a dashpot. Finally, displayed results of comparison one degree-of-freedom with mechanical driving point impedance of human body model with shock isolator. | - |
dc.description.tableofcontents | List of tables Ⅲ List of figures Ⅳ Abstract Ⅶ 1. 서론 1 2. 승조원의 손상 기준과 최적화 문제의 정식화 3 2.1 승조원의 손상 기준 3 2.2 강체질량 인체모델 3 2.2.1 한계 성능 최적화 문제 4 2.2.2 설계파라미터 최적화 문제 5 2.3 국제표준기구 인체모델 6 3. 수중폭발에 의한 충격하중 8 3.1 수중폭발 현상 8 3.2 충격하중 12 3.3 충격파의 전달에서 경계면의 영향 13 3.3.1 수중폭발 충격하중 조건과 해석 방법 14 4. 유전자 알고리즘 19 4.1 유전자 알고리즘의 원리 19 4.1.1 단순 유전자 알고리즘의 적용 20 4.1.2 단순 유전자 알고리즘 결과 21 4.2 개선된 유전자 알고리즘 22 4.2.1 단순 유전자 알고리즘의 한계 22 4.2.2 개선된 유전자 알고리즘의 특징 23 5. 최적화 결과 및 고찰 31 5.1 수치계산 방법 31 5.1.1 한계 성능 최적화 문제 31 5.1.2 설계파라미터 최적화 문제 32 5.1.3 한계 성능 특선 곡선 33 5.2 수중폭발 충격절연 장치의 성능과 결과 34 5.2.1 강체질량 인체모델 34 5.2.2 국제표준기구 인체모델 37 5.3 최적화 결과 비교 43 5.3.1 강체질량 인체모델의 결과 비교 43 5.3.2 국제표준기구 인체모델의 결과 비교 45 5.3.2 강체질량 인체모델과 국제표준기구 인체모델 결과 비교 47 6. 결론 49 참고 문헌 50 | - |
dc.language | kor | - |
dc.publisher | 한국해양대학교 대학원 | - |
dc.title | 수중폭발 충격하중으로부터 승조원을 보호하기 위한 충격 절연장치의 최적설계 연구 | - |
dc.title.alternative | Study on the Optimum Design of Shock Isolator for Protection of Crews against an Underwater Explosion Shock Loading | - |
dc.type | Thesis | - |
dc.date.awarded | 2005-02 | - |
dc.contributor.alternativeName | Myo-Jung | - |
dc.contributor.alternativeName | Kwak | - |
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.