한국해양대학교

Detailed Information

Metadata Downloads

수평축 풍력발전용 터빈 블레이드 최적설계 및 공력성능해석에 관한 연구

DC Field Value Language
dc.contributor.author 김범석 -
dc.date.accessioned 2017-02-22T06:27:01Z -
dc.date.available 2017-02-22T06:27:01Z -
dc.date.issued 2005 -
dc.date.submitted 56823-07-22 -
dc.identifier.uri http://kmou.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002175364 ko_KR
dc.identifier.uri http://repository.kmou.ac.kr/handle/2014.oak/9559 -
dc.description.abstract Wind energy has been emerged as one of important alternative energy from nature sources. Especially in part of Europe, for example, Denmark and Germany, wind has become a definite choice of the national power generation policy to cope with energy problem in terms of environment and energy shortage. In modern wind power system of large capacity above 1MW, horizontal axis wind turbine(HAWT) is a common type. And, the optimum design of wind turbine to guarantee excellent power performance and its reliability in structure and longevity is a key technology in wind industry. In this study, mathematical expressions based upon the conventional blade element momentum theory(BEMT) applying to turbine blade design was first analyzed systematically to secure accurate power prediction from the basic aerodynamic parameters such as lift and drag coefficients, Prandtl's tip loss coefficient, tangential and axial flow induction factors and twist angle. X-FOIL open software was used to acquire lift and drag coefficients of the 2-D airfoils used in power prediction procedure. Three kinds of turbine rotor blade(named as FIL series, FIL-1000:1MW, FIL-100:100KW and FIL-20:20KW) were selected as examples of the optimum blade design and power prediction. Especially, in FIL-1000 case, three kinds of airfoil(FFA, DU and NACA series) were combined to produce maximum aerodynamic performance around blade tip and strong structure around blade root. Furthermore, optimum blade design and its power prediction software, named as "POSEIDON", was also developed from the BEMT discussed in the present study. Several input data are necessary and power curve is acquired easily to show the overall characteristics of the suggested wind turbine performance. Three kinds of blades(FIL-1000, FIL-100 and FIL-20) were again selected to apply the suggested software. In case of FIL-1000, power coefficient was 0.47 at TSR=7. At FIL-100, power coeffi- cients were compared between the experimental aerodynamic data and X-FOIL prediction data, resulting in fairly good agreement. In case of FIL-20, single blade shape(NREL S809) was adopted and comparison between experimental aerodynamic parameters and X-FOIL data was made with good agreement in power prediction. Finally, systematic computational fluid dynamics(CFD) analysis by commercial code CFX ver.5.7.1 was performed to study the detailed flow characteristics upon the blade surface and wake region. Turbulence model, k-ω SST was selected to guarantee stall phenomena, one of 3-D separation flow occurring in wind turbine. ICEM-CFD, reliable grid generation commercial software was also adapted to secure good quality of grid generation necessary for the reliable CFD simulation. Three kinds of turbine were again selected to represent the complex 3-D stall flows appearing in the blade surface at various TSR condition. Centrifugal acceleration and pressure difference between hub and tip played a major role to govern the stall phenomena. Power prediction from the CFD data was also made and compared with BEMT prediction in case of FIL-20, with satisfactory agreement. In the future, aero-elastic analysis of the blade will be performed by the two-way FSI method software such as CFX-ANSYS and the more reliable blade design procedure and its performance prediction will be established. -
dc.description.tableofcontents 대형(1MW) 로터블레이드 최적설계 43 3.1.1 설계풍속의 결정 43 3.1.2 로터블레이드 직경 및 정격회전수의 결정 44 3.1.3 날개 끝 손실계수의 보정 45 3.1.4 새로운 흐름유도계수들의 결정 48 3.1.5 무차원 현의 길이 결정 50 3.1.6 입구유입 유동각 및 비틀림각의 결정 53 3.1.7 로터블레이드 익형 선정 조건 55 3.1.8 2차원 익형공력특성의 예측 58 3.2 중형 로터블레이드(100kW) 최적설계 66 3.2.1 로터블레이드 직경 및 정격회전수의 결정 66 3.2.2 날개 끝 손실계수의 보정 66 3.2.3 새로운 흐름유도계수들의 결정 68 3.2.4 무차원 현의 길이 결정 70 3.2.5 비틀림 각의 결정 71 3.2.6 2차원 익형 공력특성 72 3.3 소형 로터블레이드(20kW) 최적설계 78 3.3.1 설계변수들의 결정 78 제 4 장 성능해석 소프트웨어 개발 및 평가 88 4.1 소프트웨어 개발 88 4.2 실속 후 공력특성의 예측 95 4.3 FIL-1000 성능평가(1MW turbine) 97 4.4 FIL-100 성능평가(100kW turbine) 103 4.5 FIL-20 성능평가(20kW turbine) 111 제 5 장 CFD를 이용한 풍력터빈 전산해석 121 5.1 수치해석 기법 122 5.1.1지배방정식 124 5.1.2 이산화 방법 125 5.1.3 난류모델링 129 5.2 계산조건(FIL-1000) 132 5.3 계산격자 및 경계조건(FIL-1000) 134 5.4 결과 및 고찰(FIL-1000) 138 5.4.1 블레이드 표면 유선 138 5.4.2 블레이드 국부단면 유동특성 143 5.4.3 출력특성 151 5.5 계산조건(FIL-20) 153 5.6 계산격자 및 경계조건(FIL-20) 155 5.7 결과 및 고찰 159 5.7.1 블레이드 표면 유선 159 5.7.2 블레이드 3차원 유동특성 163 5.7.3 출력특성 173 제 6 장 결 론 175 참고문헌 177 -
dc.description.tableofcontents Abstract Nomenclature 제 1 장 서 론 1 1.1 풍력발전 현황 1 1.2 연구동향 4 1.3 연구목적 6 1.4 현대식 풍력발전용 터빈 8 1.5 현대식 풍력발전용 터빈의 구조 10 1.5.1 로터 블레이드 14 1.5.2 동력전달 장치 14 1.5.3 발전기 15 1.5.4 너셀 15 1.5.5 타워 16 제 2 장 수평축 풍력터빈의 공기역학 17 2.1 Actuator disk 이론 17 2.1.1 운동량 이론 19 2.1.2 동력계수 21 2.1.3 최대 동력계수 21 2.1.4 축 추력계수 22 2.2 Rotor disk 이론 24 2.2.1 각 운동량 이론 28 2.2.2 최대 동력 31 2.3 날개요소 이론 33 2.4 날개요소 운동량 이론 37 제 3 장 수평축 풍력터빈 블레이드 최적설계 43 3.1 중&#4510 -
dc.language kor -
dc.publisher 한국해양대학교 대학원 -
dc.title 수평축 풍력발전용 터빈 블레이드 최적설계 및 공력성능해석에 관한 연구 -
dc.title.alternative A Study on the Optimum Blade Design and the Aerodynamic Performance Analysis for the Horizontal Axis Wind Turbines -
dc.type Thesis -
dc.date.awarded 2005-08 -
dc.contributor.alternativeName BeomSeok -
dc.contributor.alternativeName KIM -
Appears in Collections:
기계공학과 > Thesis
Files in This Item:
000002175364.pdf Download

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse