신경회로망을 이용한 유도전동기의 센서리스 속도제어에 관한 연구
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 金宗洙 | - |
dc.date.accessioned | 2017-02-22T06:28:30Z | - |
dc.date.available | 2017-02-22T06:28:30Z | - |
dc.date.issued | 2002 | - |
dc.date.submitted | 56797-10-27 | - |
dc.identifier.uri | http://kmou.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002173927 | ko_KR |
dc.identifier.uri | http://repository.kmou.ac.kr/handle/2014.oak/9603 | - |
dc.description.abstract | Recently, with the development of vector control technology, induction motors has been used more in the industrial variable speed drive system. Generally, induction motor controller requires rotor speed sensors for commutation and current control, but they increase cost and size of the motor. So in these days, various researches including speed sensorless vector control are reported and some have been put to practical use. Many sensorless control algorithms use mathematical model based upon analysis techniques which have been used for the steady and transient states of induction motor. However, their control performances are greatly influenced by the parameters and load deviations. Futhermore, many difficulties occurred in starting and low-speed range. In this paper a new speed estimation method using neural networks is proposed. The neural network structure was again found by trial and error and it was found that the 8-16-1 neural network has given correct results for the instantaneous rotor speed. The eight inputs to the neural network are monitored values of the stator voltages and stator currents. The neural network contains a singles hidden layer with 16 nodes, and the activation functions used in the hidden layer are tansigmoid. The output layer contains a single node, which outputs the rotor speed. A feedback signal is necessary for only training. Supervised learning methods, through which the neural network is trained to learn the input/output pattern presented, are typically used. The back-propagation technique is used to adjust the neural network weights during training. The rotor speed is calculated by weights and eight inputs to the neural network. Also, the proposed methods have advantages such as the independency on machine parameter, the insensitivity to the load condition, and the stability in the low speed operation. The results of simulation and experiment indicate good response characteristics even in the low speed range and in the parameter variation. | - |
dc.description.tableofcontents | 목차 목차 = i 그림 및 표목차 = iii 기호 및 약어 = vii Abstract = xiii 제1장 서론 = 1 1.1 연구배경 = 1 1.2 연구동향 = 2 1.3 연구내용 = 3 1.4 논문의 구성 = 5 제2장 유도전동기의 수학적 모델 및 벡터제어 = 6 2.1 좌표축 변환 = 6 2.2 유도전동기 수식모델링 = 9 2.3 유도전동기의 벡터제어 = 14 2.3.1 직접벡터제어 = 15 2.3.2 간접벡터제어 = 18 제3장 신경회로망을 이용한 유도전동기 속도추정 = 24 3.1 신경회로망의 개요 = 24 3.1.1 신경회로망의 생물학적 구조 = 24 3.1.2 신경 회로망의 구성요소와 동작특성 = 26 3.1.3 다층 신경회로망의 구조와 학습 = 28 3.1.4 모멘텀(momentum)과 바이어스(bias) = 33 3.2 신경회로망에 의한 유도전동기 속도추정 = 33 3.2.1 전동기 수식모델 = 34 3.2.2 신경회로망에 의한 속도추정기 = 36 제4장 센서리스 속도제어 시스템 = 51 4.1 속도제어기 = 52 4.2 토크제어기 = 53 4.3 공간벡터 PWM 전류제어기 = 54 제5장 시뮬레이션 = 61 제6장 실험장치의 구성과 실험결과 = 69 6.1 실험장치의 구성 = 69 6.1.1 마이크프로세서 시스템 6.1.2 전류 및 직류링크전압 검출 6.1.3 구동 드라이브 시스템 6.1.4 속도 검출 회로 6.1.5 부하 ?寬÷梁? 6.2 실험결과 및 검토 = 76 제7장 결론 = 81 참고문헌 = 83 | - |
dc.publisher | 한국해양대학교 | - |
dc.title | 신경회로망을 이용한 유도전동기의 센서리스 속도제어에 관한 연구 | - |
dc.title.alternative | A Study on the Sensorless Speed Control of Induction Motor by Neural Network. | - |
dc.type | Thesis | - |
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.